
Rollback-Recovery Protocols 
for Send-Deterministic Applications

Amina Guermouche, Thomas Ropars, Elisabeth Brunet, 
Marc Snir and Franck Cappello



2

Fault Tolerance in HPC Systems is 
Mandatory

 Resiliency is a key problem at very large scale

− MTBF of a few hours at Exascale

− Rollback-recovery is needed to allow applications to terminate

➔ Saving information on a reliable storage
➔ Based on checkpoints

 Power consumption is another major issue

− Limit the amount of rolled back computation in the event of a failure



3

System Model

 MPI applications

− Finite set of processes

 Asynchronous distributed system

− Processes communicate by exchanging messages

➔ Causal dependencies between processes states (Lamport's 
happened-before relation)

− FIFO reliable channels

 Fail-stop failure model

− Multiple concurrent failures



4

Coordinated Checkpointing is not 
the Solution

P0

P1

P2

P3

m0

m1

m2

m3
m4

m5



5

Coordinated Checkpointing is not 
the Solution

 Synchronization at checkpoint time to ensure a consistent 
global state

− Easy to implement

− Efficient garbage collection

− Works for non-deterministic applications

P0

P1

P2

P3

m0

m1

m2

m3
m4

m5



6

Coordinated Checkpointing is not 
the Solution

 All checkpoints are written at the same time on reliable 
storage

− High stress of the file system

P0

P1

P2

P3

m0

m1

m2

m3
m4

m5



7

Coordinated Checkpointing is not 
the Solution

 One failure makes all processes rollback

− Recovery is costly regarding power consumption

P0

P1

P2

P3

m0

m1

m2

m3
m4

m5



8

The Existing Alternatives also have 
Drawbacks 

 Uncoordinated checkpointing

− Checkpoints can be scheduled

P0

P1

P2

P3

m0

m1

m2

m3
m4

m5



9

The Existing Alternatives also have 
Drawbacks 

 Uncoordinated checkpointing

− Checkpoints can be scheduled

− Suffers from the domino effect 

➔ Orphan messages have to be rolled back
➔ Recovery and garbage collection is complex

P0

P1

P2

P3

m0

m1

m2

m3
m4

m5



10

The Existing Alternatives also have 
Drawbacks 

 Message logging protocols

− Can be combined with uncoordinated checkpointing without the 
domino effect

− Only a subset of the processes have to rollback after a failure

− Messages content and delivery event have to be saved

 Assumption

− piecewise deterministic applications

➔ The only non-deterministic event are the messages reception 
event.



11

Many HPC Applications 
are Send-Deterministic

 Definition of Send-Determinism

− Given a set of input parameters, sequences of message sendings are 
always the same in any correct execution

− Messages reception order doesn't change processes behavior

 Static analysis of 27 HPC applications (Cappello 2010)

− NAS Benchmarks

− 6 NERSC Benchmarks

− 2 USQCD Benchmarks

− 6 Sequoia Benchmarks

− SpecFEM3D, Nbody, Ray2mesh

− ScaLAPACK SUMMA

25 over 27 are 
send-deterministic

25 over 27 are 
send-deterministic



12

Contributions

 An uncoordinated checkpointing protocol without domino effect

− Small subset of logged messages

− Allow partial restart

− High performance on failure free execution (MX)

 Taking into account applications communications patterns

− Improving the protocol using clustering techniques

➔ 50% of rolled back processes on average
➔ At most 50% messages logged

− A new hierarchical cluster-based protocol

➔ Message logging between clusters
➔ Limit the number of rolled back processes to one cluster



13

Uncoordinated Checkpointing 
without Domino Effect

 Consequence of send-determinism:

− Orphan messages don't need to be rolled back

− The domino effect is avoided

P0

P1

P2

P3

m0

m1

m2

m3
m4

m5



14

Uncoordinated Checkpointing 
without Domino Effect

 Avoiding logging all messages

− Processes roll back to send again the missing messages

P0

P1

P2

P3

m0

m1

m2

m3
m4

m5



15

Uncoordinated Checkpointing 
without Domino Effect

 Avoiding logging all messages

− Processes roll back to send again the missing messages

P0

P1

P2

P3

m0

m1

m2

m3
m4

m5



16

Uncoordinated Checkpointing 
without Domino Effect

 Avoiding logging all messages

− Processes roll back to send again the missing messages

P0

P1

P2

P3

m0

m1

m2

m3
m4

m5



17

Uncoordinated Checkpointing 
without Domino Effect

 Avoiding logging all messages

− Processes roll back to send again the missing messages

P0

P1

P2

P3

m0

m1

m2

m3
m4

m5



18

Uncoordinated Checkpointing 
without Domino Effect

 Avoiding logging all messages

− Processes roll back to send again the missing messages

P0

P1

P2

P3

m0

m1

m2

m3
m4

m5



19

Uncoordinated Checkpointing 
without Domino Effect

 Avoiding logging all messages

− Processes roll back to send again the missing messages

P0

P1

P2

P3

m0

m1

m2

m3
m4

m5



20

Uncoordinated Checkpointing 
without Domino Effect

 Logging messages that could lead to a domino effect

− Sender-based message logging

P0

P1

P2

P3

m0

m1

m2

m3
m4

m5



21

Uncoordinated Checkpointing 
without Domino Effect

P0

P1

P2

P3

m0

m1

m2

m3
m4

m5

Epoch=1

Epoch=1

Epoch=1

Epoch=1

Epoch=2

 Logging messages that could lead to a domino effect

− Sender-based message logging

− Using Epoch numbers

➔ Sender Epoch < Receiver Epoch 

Epoch=2

Epoch=2

Epoch=2

Epoch=2



22

Managing Causal Dependencies 
During Recovery

P0

P1

P2

P3

m0

m1 m3
m4 m5



23

Managing Causal Dependencies 
During Recovery

P0

P1

P2

P3

m0

m1 m3
m4 m5

 Restarting from an inconsistent state

− Messages that are causally dependent could be sent at the same time



24

Managing Causal Dependencies 
During Recovery

P0

P1

P2

P3

m0

m1 m3
m4 m5

 Restarting from an inconsistent state

− Messages that are causally dependent could be sent at the same time

 Causal dependency paths are broken by:

− Checkpoints

− Logged messages 



25

Managing Causal Dependencies 
During Recovery

P0

P1

P2

P3

m0

m1 m3
m4 m5

 Using phase numbers to show when a causality path is 
broken

− Similar to Lamport clocks

➔ Incremented when a causality path is broken
− Allows to order causally dependent messages 

1

1

1

1

2

2

2

3

3

3 4



26

Our Prototype in MPICH2

 Communication management in CH3/Nemesis

− Implementation over TCP and Myri-10G (MX)

− Message logging

 Rollback-recovery management in HYDRA (process manager)

− Uncoordinated process checkpointing (BLCR)

− Computation of the set of processes to rollback

➔ Using a centralized process
− Process restart (ongoing work with MPICH2 team)

➔ Restarting one process without restarting the application



27

Message Logging

 Using acknowledgements to detect messages to log

− Compare the epoch of the sender and the epoch of the receiver

− Sending an ack for every message is too costly for latency

 Optimized implementation

− Small messages (< 1 KB)

➔ Messages content are copied without waiting for the ack
➔ Acks are piggybacked on messages
➔ Only logged messages generate an explicit ack



28

Experimental Setup

 Lille cluster of Grid5000

− 45 nodes

− 2 Intel Xeon E5440 QC processors

− 8 GB of memory

− 10G-PCIE-8A-C Myri-10G NIC

− Linux kernel 2.6.26

 NetPipe Ping-Pong test over MX

− Latency

− Bandwidth

 Performance evaluation for 3 NAS benckmarcks



29

Performance Evaluation

 At most 0.5 µs (15%) overhead on latency for small messages

 40% bandwidth reduction for large messages (logging)



30

Performance Evaluation

 NAS Performance over MX

− Almost no impact without logging

− At most 5% overhead when all messages are logged



31

Computation of the recovery line

 Off-line computation

− Processes flush data about messages they send every 30s

− Off-line computation considering all failure scenario

➔ For 1 failure

 6 NAS Benchmarks, class D, 128 processes

− All processes roll back in almost every case



32

Conclusion (First Part)

 An uncoordinated checkpointing protocol for send-
deterministic applications

− No domino effect (easy garbage collection)

− Few messages logged

− Allow partial restart

 Prototype Evaluation

− Good performance on failure free execution (MX)

− All processes roll back in case of one failure

 Technical report

− Full description of the protocol

− Proof

 Summary

− Avoid checkpoint coordination

− Costly on recovery



33

Taking Into Account 
Communications Patterns 

 Improving our uncoordinated protocol using process 
clustering

 Ongoing work

− A new hierarchical checkpointing protocol based on process clustering 
for send-deterministic applications



34

Improving our Protocol

 Our protocol: logging based on epochs

− Log messages going from epoch E1 to epoch E2 if E1 < E2

 Basic idea

− Create clusters of processes

− Force message logging between clusters using different epoch 
numbers

− Take into account communication patterns to minimize the number of 
logged messages



35

Process Clustering



36

Process Clustering



37

Process Clustering

Ep 0

Ep 2

Ep 4

Ep 6

Ep 10



38

Process Clustering

Ep 0

Ep 2

Ep 4

Ep 6

Ep 10
Logging



39

Process Clustering

Ep 0

Ep 2

Ep 4

Ep 6

Ep 10
Logging

No rollback
propagation



40

Theoretical Limits

 Average number of cluster to rollback (p clusters)

− Failure in 1st cluster → p clusters rollback

− Failure in 2nd cluster → p-1 clusters rollback ...

− Failure in last cluster → 1 cluster rollback

 Maximum number of logged messages

− A: set of intra-cluster messages

− B: set of logged inter-cluster messages

− C: set of non-logged inter-cluster messages

➔ If B > 50% then C < 50%

(P+1)/2 on average

Less than 50%



41

Experimental Results

Cluster Size 32 16 8

%log %rl %log %rl %log %rl

BT 13 62.6 25.2 56.4 36.7 53.3

CG 2.9 62.5 3.4 56.3 15 43.8

FT 37.3 62.5 43.6 56 46.8 53

LU 10.3 62.5 24.1 56.3 25.9 42.1

MG 9.5 62.5 17.1 56.3 25.4 42.1

Class D NAS Benchmarks,128 processes



42

Experimental Results

Cluster Size 32 16 8

%log %rl %log %rl %log %rl

BT 13 62.6 25.2 56.4 36.7 53.3

CG 2.9 62.5 3.4 56.3 15 43.8

FT 37.3 62.5 43.6 56 46.8 53

LU 10.3 62.5 24.1 56.3 25.9 42.1

MG 9.5 62.5 17.1 56.3 25.4 42.1

Class D NAS Benchmarks, 128 processes



43

Experimental Results

Cluster Size 32 16 8

%log %rl %log %rl %log %rl

BT 13 62.6 25.2 56.4 36.7 53.3

CG 2.9 62.5 3.4 56.3 15 43.8

FT 37.3 62.5 43.6 56 46.8 53

LU 10.3 62.5 24.1 56.3 25.9 42.1

MG 9.5 62.5 17.1 56.3 25.4 42.1

Class D NAS Benchmarks, 128 processes



44

Conclusion

 An uncoordinated checkpointing protocol for send-
deterministic applications

− No domino effect

− Avoids process synchronization

− Allows partial restart

− Provides good performance of failure free execution (MX)

 Process clustering

− Limit the number of process to roll back to almost 50% on average

➔ Reducing energy consumption
− Logging only a small amount of messages (max 50%) 



45

Ongoing Work

 A hierarchical protocol based on process clustering

− Message logging between clusters

➔ Limit the consequences of a failure to one cluster
− Based on send-determinism

➔ The logged messages are still valid after a rollback
➔ Phase numbers are needed to deal with causal dependencies

− Coordinated or uncoordinated checkpointing inside a cluster

 Implementation in MPICH2

 Collaboration with Charm++ team (Esteban Meneses, Zhihui 
Dai)

− Considering a single failure

− First prototype working



Rollback-Recovery Protocols 
for Send-Deterministic Applications

Amina Guermouche, Thomas Ropars, Elisabeth Brunet, 
Marc Snir and Franck Cappello


