
On the cost of managing 
data flow dependencies
- program scheduled by work stealing -

Thierry Gautier, INRIA, 
EPI MOAIS, Grenoble France

Workshop INRIA/UIUC/NCSA 



Outline
• Context

- introduction of work stealing in Cilk+ / TBB

• How to add data flow dependencies between tasks?

- experience with Kaapi software

• Preliminary experimental results

- comparizon with Cilk/TBB 

• Conclusions



Context: multicore

• Multicore is the basic building component of super 
computer

• Dynamic load balancing

- correct ”unbalanced” work load
✓ variation due to the application
✓ variation due to the environment / OS / ...

• Work stealing scheduling is a good candidate

- Cilk (Cilk-Mit, Cilk++, Cilk+), TBB



Cilk/TBB task model
• Cilk and TBB have

-  ”task parallelism” == cilk_spawn, tbb::task
✓ task ≡ function call 
✓ theoretical foundation (only for Cilk scheduler),  Tp= O(T1/p + T∞)

- ”data parallelism” == cilk_for, tbb::parallel_for
✓ at runtime ”tasks” are created
✓ TBB has support for ”affinity” (tbb::affinity_partitioner)

➡ Independent tasks

- no dependencies between tasks => synchronization of the 
control flow (cilk_sync, tbb::task::spawn_and_wait, ...)

- ~ Fork/Join model



Cilk/TBB work stealing

• Each thread owns a work queue (WQ)

- 3 methods on a work queue
✓ push/pop : only called by the owner
✓ steal : only called by a thief

• Work stealing algorithm

- push/pop to execute work

- idle thread (with empty work queue) invokes ‘steal’ 
✓ randomly selected victim work queue



Some properties

1. Cilk and TBB have a “C++” elision
✓ “sequential execution” is a valid execution order

2. Number of steal requests per core is O(T∞)
✓ Low if small critical path T∞ (highly parallel algorithm)

3. Work first principle
✓ “Minimize scheduling overhead borne by work at the expense of 

increasing the critical path”
- Extra operations during steal requests are reported into the critical path



Work queue protocols
• Management of the concurrency on the victim’s 

work queue 
✓ several thieves, one victim thread

- T.H.E. : Cilk, TBB
✓ serialization of thieves using a lock + Dijkstra-like protocol 

between one thieves and the victim with lock in rare case

- ABP (Arora, Blumofe, Plaxton), Chase & Lev, ...
✓ concurrency is managed by read-modify-write atomic instruction 

(i.e. compare & swap)

• Need of memory barriers to ensure sequential 
consistency



Our goal

• Extend the ”task model” of  TBB/Cilk+

- tasks with data flow dependencies 
✓ fine model of application for scheduling
✓ automatic management of communications between tasks

- partitioning of the data flow graph / iterative application

- data transfer between GPUs and CPUs into a multicore

- add useful semantics to specialize coherency protocol in presence of copies

✓ improvement of checkpoint/rollback protocol [X. Besseron]
- 1 month at UIUC in march 2010

➡ How to manage efficiently such dependencies ?

- comparison with TBB/Cilk+



Data flow dependencies

• A task is ready iff all its inputs are produced

- data flow machine

- some runtime

• Two main costs
1. at task creation: storing the data flow dependencies
2. at task execution: computation of ”ready” property 

T1 T2

T3

a b c



Overview of impl. in Kaapi
• Kaapi 

- C / C++ library

- high level API: macro data flow programming
- low level API: for fine grain adaptive algorithm

• Optimization of 3 aspects

- Task representation
✓ very light = function call + pointer to effective parameters 

- Task execution
✓ take into account specificity of work stealing based execution 

- Data flow representation
✓ lazy approach: compute data flow constraints only when 

required



Kaapi task model
• Global address space

✓ data shared between tasks

• Task ~ function call
✓ task has a signature = accesses mode to each effective parameter
✓ several implementations of the task’ body
✓ sizeof task = 2 pointers + args

/* Signature for T1, T2, T3 */
struct Task1: public Task<1>::Signature<W<double> > {};                 /* 1 Write access   */
struct Task2: public Task<2>::Signature<W<Matrix>, W<int> > {};         /* 2 Write accesses */
struct Task3: public Task<2>::Signature<R<double>, R<Matrix> > {};      /* 2 Read accesses  */

/* Task body for T1, T2, T3 */
template<> struct TaskBodyCPU<Task1> { void operator() ( pointer_w<int> a ) { ... } };
template<> struct TaskBodyCPU<Task2> { void operator() ( pointer_w<Matrix> b, pointer_w<int> c ) { ... } };
template<> struct TaskBodyCPU<Task3> { void operator() ( pointer_r<int> a, pointer_r<Matrix> b ) { ... } };

/* Previous graph: */
double* a = ..;
Matrix* b = ..;
int* c = ..;
Spawn<Task1>()( &a );
Spawn<Task2>()( &b, &c );
Spawn<Task3>()( &a, &b );

T1 T2

T3

a b c

a
b,c
a,b

task4
task3
task2
task1

task grow’s
direction

args grow’s
direction

sp

pc

sp data



Task creation / execution

• Work first principle applied to Kaapi:

- optimize the sequential execution... 
✓ tasks are executed following the sequential creation order, 

without data flow dependencies computation

- ...at the expense of increasing the critical path during 
work stealing requests
✓ compute ready tasks



Stealing into a work queue
• Iterate on all the tasks into the work queue

✓ pseudo code:
- for task t in the work queue 
-    if (compute_ready(t)) return t;

✓ order of iteration = sequential order of creation

• Non constant complexity 
✓ bounded by the depth of the computation
✓ constant if independent tasks
✓ use hash map to retrieve a same data accessed by several tasks

• Main costs are reported during steal request but:

- increasing the critical path reduce the scalability

- average parallelism = T1/T∞



Cost to create task

• Task creation (average of 1000 spawns of task)

- opteron 875, 2.2Ghz, gcc 4.4.2, -O3

- Time(spawn) = 12 cycles (~5.6 ns) per task 

- + ~ 3cyles / pointer arguments



Execution overhead

long fib(long n)
{
  if (n < 2)
!   return (n);
  else {
!   long x, y;
!   x = cilk_spawn fib(n - 1);
!   y = fib(n - 2);
!   cilk_sync;
!   return (x + y);
  }
}

Cilk+

long fib(long n)
{
  if (n < 2)
!   return (n);
  else 
!   return fib(n - 1) + fib(n - 2);
}

Sequential

template<>
struct TaskBodyCPU<TaskFibo> : public TaskFibo {
  void operator() ( ka::Thread* thread, ka::pointer_w<long> res, const long n )
  {  
    if (n < 2) 
      *res = n;
    else {
      long x,y;
      ka::Spawn<TaskFibo>() ( &x, n-1);
      (*this)( thread, &y, n-2);
      ka::Sync();
      *res = x + y;
    }
  }
};

Kaapi

struct FibContinuation: public tbb::task {
    long* const sum;
    long x, y;
    FibContinuation( long* sum_ ) : sum(sum_) {}
    tbb::task* execute() {
        *sum = x+y;
        return NULL;
    }
};

struct FibTask: public tbb::task {
    long n;
    long * sum;
    FibTask( const long n_, long * const sum_ ) :
        n(n_), sum(sum_)
    {}
    tbb::task* execute() {
        if( n<2){
            *sum = n;
            return NULL;
        } else {
            FibContinuation& c = 
                *new( allocate_continuation() ) FibContinuation(sum);
            FibTask& b = *new( c.allocate_child() ) FibTask(n-1,&c.y);
            recycle_as_child_of(c);
            n -= 2;
            sum = &c.x;
            // Set ref_count to "two children".
            c.set_ref_count(2);
            c.spawn( b );
            return this;
        }
    }
};

TBB• Objective: comparizon of Data Flow [Kaapi] vs Independent Task [Cilk/TBB] on 
multicore machine

• 1 program (fibonacci), 4 implementations 

- sequential
- Cilk+

- Kaapi

- TBB

• Timing

- T1 for Cilk, Kaapi, TBB = time using 1 core

- Tp using p cores

- Tseq sequential implementation

• Environment 

• Intel X7460, 2.67Ghz, 4 x 24 cores = 96 cores, NUMA

• gcc-4.4 -O3

• Intel icpc 12.0 -O3



Sequential execution overhead

• No extra data flow constraints to solve in the   
Kaapi execution (1 core => no steal!)

• Grain size selection to amortize overhead

Sequential Cilk+ TBB Kaapi

1.67s
(slowdown:1)

11.8s
(x 7.07)

17.86s
(x 10.69)

7.99s
(x 4.78)



Multicore
• 4x24 cores machine from EPI RUNTIME [Namyst]

✓ Intel X7460, 2.67Ghz, NUMA
✓ Time in second, fibonacci(40)

• Kaapi has good runtime up to #cores in ]64,96]

- Increase of the critical path T∞ (less average parallelism)

• Small speeds (Tseq=1.67s) due to too fine grain

#Cores Kaapi Cilk+ TBB
1 7.99 11.81 17.86
16 0.50 0.78 1.13
24 0.33 0.58 0.75
48 0.18 0.32 0.39
64 0.17 0.22 0.30
96 0.21 0.14 0.20



Conclusions
• For fork/join program & work stealing scheduling

- data flow does not cost vs independent tasks
✓ fine grain implementation + work first principle 

- drawback: reduction of the scalability

• On going optimizations

- Use T.H.E work queue 
✓ currently based on costly atomic operation

- Work stealing requests aggregation
✓ critical path optimization + better load balance 

- Taking into account shared cache
✓ lock, biased work stealing



Status of Kaapi software
• Beta version rc2 under testing

- http://kaapi.gforge.inria.fr

• Next month: official release

- work stealing + distributed memory architecture + 
initial pre decomposition (graph partitioning) + GPUs/
CPUs

• Applications

- SOFA (http://www.sofa-framework.org/)
✓ multi CPUs, multi GPUs

- numerical iterative application

- parallelization of  VTK


