On the cost of managing
data flow dependencies

- program scheduled by work stealing -

Thierry Gautier, INRIA,
EPlI MOAIS, Grenoble France

Workshop INRIA/UIUC/NCSA

® Context

- introduction of work stealing in Cilk+ / TBB

® How to add data flow dependencies between tasks?

- experience with Kaapi software

® Preliminary experimental results
- comparizon with Cilk/TBB

® Conclusions

® Multicore is the basic building component of super
computer

® Dynamic load balancing

- correct ’unbalanced” work load

v variation due to the application
v variation due to the environment/ OS/ ...

® Work stealing scheduling is a good candidate
- Cilk (Cilk-Mit, Cilk++, Cilk+), TBB

® Cilk and TBB have

- task parallelism” == cilk_spawn, tbb::task
v task = function call
v theoretical foundation (only for Cilk scheduler), Tp= O(Ti/p + Tw)

- "data parallelism” == cilk_for, tbb::parallel_for

v at runtime ’tasks” are created
v TBB has support for affinity” (tbb::affinity partitioner)

= Independent tasks

- no dependencies between tasks => synchronization of the
control flow (cilk _sync, tbb::task::spawn_and_wait, ...)

- ~ Fork/Join model

® Fach thread owns a work queue (WQ)

- 3 methods on a work queue

v push/pop : only called by the owner
v steal : only called by a thief

® Work stealing algorithm

- push/pop to execute work

- idle thread (with empty work queue) invokes ‘steal’
v randomly selected victim work queue

|. Cilk and TBB have a “C++” elision

v “sequential execution” is a valid execution order

2. Number of steal requests per core is O(T)
v Low if small critical path T« (highly parallel algorithm)

3. Work first principle

v “Minimize scheduling overhead borne by work at the expense of
increasing the critical path”

- Extra operations during steal requests are reported into the critical path

® Management of the concurrency on the victim’s
work queue

v several thieves, one victim thread

- I.H.E.: Cilk, TBB

v serialization of thieves using a lock + Dijkstra-like protocol
between one thieves and the victim with lock in rare case

- ABP (Arora, Blumofe, Plaxton), Chase & Ley, ...

v concurrency is managed by read-modify-write atomic instruction
(i.e. compare & swap)

® Need of memory barriers to ensure sequential
consistency

® Extend the ’task model” of TBB/Cilk+

- tasks with data flow dependencies

v fine model of application for scheduling
v automatic management of communications between tasks
- partitioning of the data flow graph / iterative application

- data transfer between GPUs and CPUs into a multicore

- add useful semantics to specialize coherency protocol in presence of copies

v improvement of checkpoint/rollback protocol [X. Besseron]
- | month at UIUC in march 2010

) How to manage efficiently such dependencies ?
- comparison with TBB/Cilk+

® A task is ready iff all its inputs are produced

- data flow machine

= SOMe runtime @

W

| at task creation: storing the data flow dependencies
2. at task execution: computation of ’ready” property

® [wo main costs

e Kaapi

- C/ C++ library

- high level APl: macro data flow programming
- low level API: for fine grain adaptive algorithm

® Optimization of 3 aspects

- Task representation
v very light = function call + pointer to effective parameters

- Task execution
v take into account specificity of work stealing based execution

- Data flow representation

v lazy approach: compute data flow constraints only when
required

Kaapi task model

® Global address space

v data shared between task
args grow’s

® Task ~ function call direction

v task has a signature = acc sp data,
v several implementations ¢
v sizeof task = 2 pointers +

/* Signature for T1l, T2, T3 */
struct Taskl: public Task<1l>::Signature<W<doubl
struct Task2: public Task<2>::Signature<W<Matri
struct Task3: public Task<2>::Signature<R<doubl

/* Task body for T1, T2, T3 */
template<> struct TaskBodyCPU<Taskl> { void operatd
template<> struct TaskBodyCPU<Task2> { void operatd
template<> struct TaskBodyCPU<Task3> { void operatcd

}:
}:

/* Previous graph: */

Motrine b = L task grow’s
int* ¢ = ..; direction

Spawn<Task1l>()(&a);
Spawn<Task2>()(&b, &c);
Spawn<Task3>()(&a, &b);

® Work first principle applied to Kaapi:

- optimize the sequential execution...

v tasks are executed following the sequential creation order,
without data flow dependencies computation

- ...at the expense
work stealing gequests

easing the critical path during

v compute ready tasks

® |terate on all the tasks into the work queue

v pseudo code:

- for task t in the work queue
if (compute_ready(t)) return t;

v order of iteration = sequential order of creation

® Non constant complexity

v bounded by the depth of the computation
v constant if independent tasks
v use hash map to retrieve a same data accessed by several tasks

® Main costs are reported during steal request but:

- increasing the critical path reduce the scalability
- average parallelism =T/T«

® Task creation (average of 1000 spawns of task)
- opteron 875,2.2Ghz, gcc 4.4.2,-0O3
- Time(spawn) = |2 cycles (~5.6 ns) per task

- + ~ 3cyles / pointer arguments

Cilk¥

Objective:

publlc tbb {

ibContinuation:

multicore machine st sun;

| program

sequentj

long flb(l ng n
{ =
if (n < 2)

else {

. reﬂﬁgmsihg
o—

return (n);

il’ ifping.,
LSRG

Tseq S€Q

long x, y;

(fiBEnacE), 4 imipleffentatighs™ ©

I *sum = X+y;
1a return NULL;

}i

struct FibTask: public tbb::task {
long nj;
long * sum;
FibTask(const long n , long * const sum_) :
n(n_), sum(sum)
{}
tbb::task* execute() {

ilk, Kaapf, TBB & time using | core
sum = nj;
P Cores return NULL;

else {

uential mpiemantaﬁman& c =

Environn

*new(allocate continuation()) FibContinuation(sum);
FibTask& b = *new(c.allocate child()) FibTask(n-1,&c.y);
recycle as child of(c);

nent e o

Intel

gcc-4.

7460, 2.67Ghz, 4 x-24 cores =:96-cores, NUMA

c.set ref _count(2);

_03 c.spawn(b);

return this;

Intel i¢pc 2.0 -O3
i

BB] on

s, const long n)

Sequential Cilk+ TBB Kaapi

1.67s | 1.8s | 7.86s 7.99s
(slowdown:l) | (x 7.07) (x 10.69) (x 4.78)

® No extra data flow constraints to solve in the
Kaapi execution (| core => no steal!)

® Grain size selection to amortize overhead

® 4x24 cores machine from EPI RUNTIME [Namyst]

v Intel X7460, 2.67Ghz, NUMA
v Time in second, fibonacci(40)

#Cores Kaapi Cilk+ TBB
1 7.99 11.81 17.86
16 0.50 0.78 1.13
24 0.33 0.58 0.75
48 0.18 0.32 0.39
64 0.17 0.22 0.30
96 0.21 0.14 0.20

® Kaapi has good runtime up to #cores in]64,96]

- Increase of the critical path T. (less average parallelism)

® Small speeds (Tseq=1.67s) due to too fine grain

® For fork/join program & work stealing scheduling

- data flow does not cost vs independent tasks
v fine grain implementation + work first principle

- drawback: reduction of the scalability

® On going optimizations

- Use T.H.E work queue
v currently based on costly atomic operation

- Work stealing requests aggregation
v critical path optimization + better load balance

- Taking into account shared cache
v lock, biased work stealing

® Beta version rc2 under testing
- http://kaapi.gforge.inria.fr

® Next month: official release

- work stealing + distributed memory architecture +
initial pre decomposition (graph partitioning) + GPUs/
CPUs

® Applications

- SOFA (http://www.sofa-framework.org/)
v multi CPUs, multi GPUs

- humerical iterative application
- parallelization of VTK

