Overview of research activities
Toward “portability of performance”

» Do dynamically what can’t be done

statically
Understand evolution of architectures HPC Applications
Enable new programming models
Put intelligence into the runtime! Parallel Parallel
Compilers Libraries
» Exploiting shared memory machines A
Thread scheduling over hierarchical

multicore architectures

99999999
Task scheduling over accelerator-based

machines
» Communication over high speed
networks

Multicore-aware communication Runtime system
engines

Multithreaded MPI implementations
» Integration of multithreading and
communication

Runtime support for hybrid
programming
MPI + OpenMP + CUDA + TBB + ...

Operating System
CPU GPU

‘ Integrated:Memory Controller -13:Ch DDR31

Cdre 0. Core1 Core2 - Core3 :

Shared L3 Cache |

Heterogeneous computing is here
And portable programming is getting harder...

» GPU are the new kids on the
block

Very powerful data-parallel
accelerators

Specific instruction set

No hardware memory
consistency

» Clusters featuring accelerators |
are already heading the ‘ SnviDiA. - TESLA
Top500 list ~-

Tianhe-1A (#1)
Nebulae (#3)
Tsubame 2.0 (#5)
Roadrunner (#7?)

» Using GPUs as “side
accelerators” is not enough

GPU = first class citizens

Heterogeneous computing is here
How shall we program heterogeneous clusters?

» The hard hybrid way

Combine different
paradigms by hand
MPI +
gOpenMP/TBB/???} +
CUDA/OpenCL}

Portability is hard to achieve

Work distribution depends on

#GPU & #CPU per node...
Tools such as S-GPU may
help!

Needs aggressive autotuning

Currently used for building
parallel numerical kernels

MAGMA, D-PLASMA, FFT
kernels

Multicore

Accelerators

Heterogeneous computing is here
Mixing different paradigms leads to several issues

» Semantics issues
MPI and OpenMP don’t mix easily
E.g. MPI communication inside parallel regions

Higher-level abstractions would help!
Think about domain-decomposition algorithms

» Resource allocation issues
Can we really use several hybrid parallel kernels simultaneously?

Ever tried to mix OpenMP and MKL?
Could be helpful in order to exploit millions of cores

It's all about composability

Probably the biggest challenge for runtime systems
Hybridization will mostly be indirect (linking libraries)

And with composability come a lot of related issues
Need for autotuning / scheduling hints

Runtime systems enabling composability
Background

» So far, we've been working on providing a common runtime system for
MPI + (OpenMP)* = multiple OpenMP kernels mixed inside an MPI application

» Main features
Hierarchical thread scheduling (with potential oversubscription)

Topology-aware, adaptive parallelism
Give more cores to regions that scale better!

» Towards a common, unified runtime system?

MKL PLASMA
MPI
OpenMP Intel TBB HMPP implementations
Unified Multicore Runtime System
Task Management Data distribution 1/O services
(Threads/Tasklets/Codelets) facilities
Topology-aware Memory . i
Scheduling Management SYDERiEation

Heterogeneous computing is here (cont’d)
How shall we program heterogeneous clusters?

» The uniform way

Use a single (or a

combination of) high—level Multicore Accelerators
programming language to
deal with network + HMPP
multicore + accelerators

Increasing number of
directive-based languages

Use simple directives... and
good compilers!
XcalableMP
PGAS approach
HMPP, OpenMPC, OpenMP 4.0

Generate CUDA from OpenMP
code

StarSs

StarSs

Much better potential for
composability...

If compiler is clever!

We need new runtime systems!
Leveraging CUDA/OpenCL

» Kernels need to exploit GPUs AND CPUs
simultaneously

» Kernels need to run simultaneously

» Kernels need to accommodate to a variable
number of processing units

Overview of StarPU
A runtime system for heterogeneous architectures

» Rational

Dynamically schedule
tasks on all
processing units

See a pool of
heterogeneous

processing units

Avoid unnecessary
data transfers
between accelerators

Software VSM for
heterogeneous
machines

Overview of StarPU

Maximizing PU occupancy, minimizing data transfers

» Ideas

Accept tasks that may

have multiple

implementations
Together with potential
inter-dependencies

Leads to a dynamic
acyclic graph of tasks

Provide a high-level
data management layer
Application should only

describe

which data may be
accessed by tasks

How data may be divided

Applications

Parallel
Compilers

Parallel
Libraries

StarPU

Drivers (CUDA, OpenCL)

CPU GPU

Memory Management
Automating data transfers

» StarPU provides a Virtual Applications
Shared Memory Parallel Parallel
subsystem Compilers Libraries

Weak consistency
Explicit data fetch
Replication
MSI protocol

Single writer
Except for specific,

“accumulation data” StarPU
High-level API
Partitioning filters Drivers (CUDA, OpenCL)
CPU GPU

» Input & output of tasks
= reference to VSM data

Tasks scheduling
Dealing with heterogeneous hardware accelerators

» Tasks = HPC Applications

Data input & output

Dependencies with
other tasks

Parallel Parallel
Compilers Libraries

Multiple
implementations

E.g. CUDA + CPU
implementation

Scheduling hints

\StarPU

» StarPU provides an

Open Scheduling

\
cpu \JDA, OpenCL)

latform |
P f gpp:' (Arw, Bk, CR))SPU

Scheduling algorithm =
plug-ins

Tasks scheduling
How does it work?

» When a task is submitted,
it first goes into a pool of
“frozen tasks” until all
dependencies are met

» Then, the task is “"pushed”
to the scheduler

» Idle processing units
actively poll for work

("pop”)

» What happens inside the
scheduler is... up to you!

l Push

Scheduler

Popl Popl
§28S =S

CPU GPU
workers workers

Tasks scheduling
Developing your own scheduler

» Queue based scheduler

Each worker « pops »

task in a specific queue Push

» Implementing a strategy
Easy!
Select queue topology

Implement « pop » and
« push » Pop
Priority tasks

OO MM | mm—

Work stealing
Performance models, ...

_ _ CPU GPU
» Scheduling algorithms workers workers

testbed

Tasks scheduling
Developing your own scheduler

» Queue based scheduler

Each worker « pops »
task in a specific queue

» Implementing a strategy
Easy!
Select queue topology

Implement « pop » and
« push »
Priority tasks
Work stealing
Performance models, ...

» Scheduling algorithms
testbed

CE 00

CPU
workers

GPU
workers

Dealing with heterogeneous architectures
Performance prediction

» Task completion time

estimation)
History-based cpu #1| W] I
User-defined cost -
function cpu #2 I} I
Parametric cost model [
cpu #3 | i
]
» Can be used to gpu #1 [T 'i'll
improve scheduling I
gpu #2L 1 | I il
E.g. Heterogeneous

Earliest Finish Time
time

Dealing with heterogeneous architectures
Performance prediction

» Data transfer time
estimation

Sampling based on cpu #1 | |

off-line calibration

i
I
cpu #2 | | ! I
I
» Can be used to 5w 23 | I | I
Better estimate [
overall exec time gpu #1 [T I II
Minimize data I
movements gpu #2L L | I i

v

time

Dealing with heterogeneous architectures

Performance

» On the influence of
the scheduling policy

LU decomposition

8 CPUs (Nehalem) + 3
GPUs (FX5800)

80% of work goes on
GPUs, 20% on CPUs

» StarPU exhibits good
scalability wrt:

Problem size
Number of GPUs

800
/700
600
500
400
300
200
100

H Greedy

B task
model

H prefetch

[data
model

0
S peed (GFlops)

—~= MAGMA
SarPl sreeees

36GB 16 L;.E d

Dealing with heterogeneous architectures
Implementing MAGMA on top of StarPU

. . . 1000 T . ,
» With University of 000 | —— 3GPUSs +5CPUs
Tennessee & INRIA _ 800
HiePACS g 700
holesky d iti s o
Cholesky decomposition 3 500
5 CPUs (Nehalem) + 3 GPUs £ 400
(FX5800) 2 300
Efficiency > 100% * 200 ’
100 -
0

5120 15360 25600 35840 46080
Matrix order

MEM.14083

14084

root progr. 14085

MEM 14078

MEM.14079

MEM.14080

Using StarPU through a standard API

A StarPU driver for OpenCL

» Run legacy OpenCL codes
on top of StarPU

OpenCL sees a number of
starPU devices

» Performance limitations
Data transfers performed
just-in-time
Data replication not
managed by StarPU

» Ongoing work

We propose light extensions
to OpenCL

Greatly improves flexibility
when used

Regular OpenCL behavior if
not extension is used

Legacy OpenCL Application

OpenCL

StarPU

CPU GPU

Integration with Multithreading
Dealing with parallel StarPU tasks

» StarPU + OpenMP/TBB/...

Many algorithms can take
advantage of shared
memory

We can’t seriously
“taskify” the world!

——

» The Stencil case

When neighbor tasks can
be scheduled on a single
node

Just use shared memory!

Hence an OpenMP stencil
kernel

Integration with and Multithreading

Dealing with parallel StarPU tasks

» Current approach
Let StarPU spawn

OpenMP tasks

Performance modeling
would still be valid

Would also work with other
tools

E.g. Intel TBB

How to find the appropriate
granularity?

May depend on the
concurrent tasks!

StarPU tasks = first class
citizen
Need to bridge the gap with
existing parallel languages

CPU
workers

GPU
workers

High-level integration
Generating StarPU code out of StarSs

» Experiments with

StarSs [UPC
Barcelona]

» Writing StarSs
+0OpenMP code is
easy

Platform for
experimenting hybrid
scheduling

OpenMP + StarPU

#pragma css task inout(v)
void scale_vector(float *v, float a, size_t n);

#pragma css target device(smp) implements
(scale_vector)
void scale_vector_cpu(float *v, float a, size_t n) {
inti;
for(i=0;i<n;i++)
v[i] *= a;

b
int main(void)

float v[] = {1, 2, 3,4, 5,6, 7,8, 9};
size_t vs = sizeof(v)/sizeof(*v);

#pragma css start

scale_vector(v, 4, vs);

Future work

» Propose “natural” extensions to OpenCL
Introduce more dynamicity

» Enhance cooperation between runtime systems
and compilers
Granularity, runtime support for “divisible tasks”

Feedback for autotuning software
[PEPPHER European project]

» Demonstrate the relevance of StarPU in other
frameworks

StarPU+OpenMP+MPI as a target for XcalableMP
French-Japanese ANR-JST FP3C project

Thank you!

» More information about StarPU
http://runtime.bordeaux.inria.fr

