
Parallel
Compilers

HPC Applications

Runtime system

Operating System

CPU

Parallel
Libraries

  Do dynamically what can’t be done
statically
  Understand evolution of architectures
  Enable new programming models
  Put intelligence into the runtime!

  Exploiting shared memory machines
  Thread scheduling over hierarchical

multicore architectures
  OpenMP

  Task scheduling over accelerator-based
machines

  Communication over high speed
networks
  Multicore-aware communication

engines
  Multithreaded MPI implementations

  Integration of multithreading and
communication
  Runtime support for hybrid

programming
  MPI + OpenMP + CUDA + TBB + …

Overview of research activities
Toward “portability of performance”

GPU …

  GPU are the new kids on the
block
  Very powerful data-parallel

accelerators
  Specific instruction set
  No hardware memory

consistency

  Clusters featuring accelerators
are already heading the
Top500 list
  Tianhe-1A (#1)
  Nebulae (#3)
  Tsubame 2.0 (#5)
  Roadrunner (#?)

  Using GPUs as “side
accelerators” is not enough
  GPU = first class citizens

Heterogeneous computing is here
And portable programming is getting harder…

  The hard hybrid way
  Combine different

paradigms by hand
  MPI +

{OpenMP/TBB/???} +
{CUDA/OpenCL}

  Portability is hard to achieve
  Work distribution depends on

#GPU & #CPU per node…
  Tools such as S-GPU may

help!
  Needs aggressive autotuning

  Currently used for building
parallel numerical kernels
  MAGMA, D-PLASMA, FFT

kernels

Heterogeneous computing is here
How shall we program heterogeneous clusters?

M.

CPU

CPU

CPU

CPU M. *PU

M. *PU

Multicore

OpenMP
TBB

Accelerators

MPI Cilk ?

ALF
CUDA

OpenCL
Ct ?

Heterogeneous computing is here

  Semantics issues
  MPI and OpenMP don’t mix easily

  E.g. MPI communication inside parallel regions
  Higher-level abstractions would help!

  Think about domain-decomposition algorithms

  Resource allocation issues
  Can we really use several hybrid parallel kernels simultaneously?

  Ever tried to mix OpenMP and MKL?
  Could be helpful in order to exploit millions of cores

  It’s all about composability
  Probably the biggest challenge for runtime systems

  Hybridization will mostly be indirect (linking libraries)

  And with composability come a lot of related issues
  Need for autotuning / scheduling hints

Mixing different paradigms leads to several issues

Runtime systems enabling composability

  So far, we’ve been working on providing a common runtime system for
  MPI + (OpenMP)* = multiple OpenMP kernels mixed inside an MPI application

  Main features
  Hierarchical thread scheduling (with potential oversubscription)
  Topology-aware, adaptive parallelism

  Give more cores to regions that scale better!

  Towards a common, unified runtime system?

Background

Unified Multicore Runtime System

Topology-aware
Scheduling

Memory
Management Synchronization

Task Management
(Threads/Tasklets/Codelets)

Data distribution
facilities I/O services

OpenMP Intel TBB HMPP

MKL PLASMA

MPI
implementations

  The uniform way
  Use a single (or a

combination of) high—level
programming language to
deal with network +
multicore + accelerators

  Increasing number of
directive-based languages
  Use simple directives… and

good compilers!
  XcalableMP

  PGAS approach
  HMPP, OpenMPC, OpenMP 4.0

  Generate CUDA from OpenMP
code

  StarSs

  Much better potential for
composability…
  If compiler is clever!

Heterogeneous computing is here (cont’d)
How shall we program heterogeneous clusters?

M.

CPU

CPU

CPU

CPU M. *PU

M. *PU

Multicore

OpenMP

Accelerators

?

HMPP

StarSs
OpenMPC XMP

We need new runtime systems!

  Kernels need to exploit GPUs AND CPUs
simultaneously

  Kernels need to run simultaneously

  Kernels need to accommodate to a variable
number of processing units

Leveraging CUDA/OpenCL

  Rational
  Dynamically schedule

tasks on all
processing units
  See a pool of

heterogeneous
processing units

  Avoid unnecessary
data transfers
between accelerators
  Software VSM for

heterogeneous
machines

Overview of StarPU
A runtime system for heterogeneous architectures

A = A+B

M.

CPU

CPU

CPU

CPU M. GPU

M. GPU

CPU

CPU

CPU

CPU

M. A

B
B

M. GPU

M. GPU

  Ideas
  Accept tasks that may

have multiple
implementations
  Together with potential

inter-dependencies
  Leads to a dynamic

acyclic graph of tasks

  Provide a high-level
data management layer
  Application should only

describe
  which data may be

accessed by tasks
  How data may be divided

Overview of StarPU
Maximizing PU occupancy, minimizing data transfers

Parallel
Compilers

Applications

StarPU

Drivers (CUDA, OpenCL)

CPU

Parallel
Libraries

GPU …

Parallel
Compilers

Applications

StarPU

Drivers (CUDA, OpenCL)

CPU

Parallel
Libraries

  StarPU provides a Virtual
Shared Memory
subsystem
  Weak consistency

  Explicit data fetch
  Replication

  MSI protocol
  Single writer

  Except for specific,
“accumulation data”

  High-level API
  Partitioning filters

  Input & output of tasks
= reference to VSM data

Memory Management
Automating data transfers

GPU …

CPU

Parallel
Compilers

HPC Applications

StarPU

Drivers (CUDA, OpenCL)

Parallel
Libraries

  Tasks =
  Data input & output
  Dependencies with

other tasks
  Multiple

implementations
  E.g. CUDA + CPU

implementation
  Scheduling hints

  StarPU provides an
Open Scheduling
platform
  Scheduling algorithm =

plug-ins

Tasks scheduling
Dealing with heterogeneous hardware accelerators

GPU … (ARW, BR, CR) f
cpu
gpu
spu

  When a task is submitted,
it first goes into a pool of
“frozen tasks” until all
dependencies are met

  Then, the task is “pushed”
to the scheduler

  Idle processing units
actively poll for work
(“pop”)

  What happens inside the
scheduler is… up to you!

Tasks scheduling
How does it work?

Scheduler

CPU
workers

GPU
workers

Push

Pop Pop

  Queue based scheduler
  Each worker « pops »

task in a specific queue

  Implementing a strategy
  Easy!
  Select queue topology
  Implement « pop » and

« push »
  Priority tasks
  Work stealing
  Performance models, …

  Scheduling algorithms
testbed

Tasks scheduling
Developing your own scheduler

CPU
workers

GPU
workers

Push

Pop

  Queue based scheduler
  Each worker « pops »

task in a specific queue

  Implementing a strategy
  Easy!
  Select queue topology
  Implement « pop » and

« push »
  Priority tasks
  Work stealing
  Performance models, …

  Scheduling algorithms
testbed

Tasks scheduling
Developing your own scheduler

CPU
workers

GPU
workers

?

Push

Pop

  Task completion time
estimation
  History-based
  User-defined cost

function
  Parametric cost model

  Can be used to
improve scheduling
  E.g. Heterogeneous

Earliest Finish Time

Dealing with heterogeneous architectures
Performance prediction

time

cpu #3

gpu #1

cpu #2

cpu #1

gpu #2

  Data transfer time
estimation
  Sampling based on

off-line calibration

  Can be used to
  Better estimate

overall exec time
  Minimize data

movements

Dealing with heterogeneous architectures
Performance prediction

time

cpu #3

gpu #1

cpu #2

cpu #1

gpu #2

  On the influence of
the scheduling policy
  LU decomposition

  8 CPUs (Nehalem) + 3
GPUs (FX5800)

  80% of work goes on
GPUs, 20% on CPUs

  StarPU exhibits good
scalability wrt:
  Problem size
  Number of GPUs

Dealing with heterogeneous architectures
Performance

  With University of
Tennessee & INRIA
HiePACS
  Cholesky decomposition

  5 CPUs (Nehalem) + 3 GPUs
(FX5800)

  Efficiency > 100%

Dealing with heterogeneous architectures
Implementing MAGMA on top of StarPU

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 5120 15360 25600 35840 46080

Pe
rfo

rm
an

ce
 (G

flo
p/

s)

Matrix order

4 G
B

3 GPUs + 5 CPUs
3 GPUs
2 GPUs
1 GPU

  Run legacy OpenCL codes
on top of StarPU
  OpenCL sees a number of

starPU devices

  Performance limitations
  Data transfers performed

just-in-time
  Data replication not

managed by StarPU

  Ongoing work
  We propose light extensions

to OpenCL
  Greatly improves flexibility

when used
  Regular OpenCL behavior if

not extension is used

Using StarPU through a standard API
A StarPU driver for OpenCL

OpenCL

StarPU

CPU GPU …

Legacy OpenCL Application

  StarPU + OpenMP/TBB/…
  Many algorithms can take

advantage of shared
memory

  We can’t seriously
“taskify” the world!

  The Stencil case
  When neighbor tasks can

be scheduled on a single
node
  Just use shared memory!
  Hence an OpenMP stencil

kernel

Integration with Multithreading
Dealing with parallel StarPU tasks

  Current approach
  Let StarPU spawn

OpenMP tasks
  Performance modeling

would still be valid

  Would also work with other
tools
  E.g. Intel TBB

  How to find the appropriate
granularity?
  May depend on the

concurrent tasks!

  StarPU tasks = first class
citizen
  Need to bridge the gap with

existing parallel languages

Integration with and Multithreading
Dealing with parallel StarPU tasks

CPU
workers

GPU
workers

  Experiments with
  StarSs [UPC

Barcelona]

  Writing StarSs
+OpenMP code is
easy
  Platform for

experimenting hybrid
scheduling
  OpenMP + StarPU

High-level integration
Generating StarPU code out of StarSs

#pragma css task inout(v)
void scale_vector(float *v, float a, size_t n);

#pragma css target device(smp) implements
(scale_vector)
void scale_vector_cpu(float *v, float a, size_t n) {

 int i;
 for (i = 0; i < n; i++)
 v[i] *= a;

}

int main(void)
{

 float v[] = {1, 2, 3, 4, 5, 6, 7, 8, 9};
 size_t vs = sizeof(v)/sizeof(*v);

#pragma css start

scale_vector(v, 4, vs);
…

Future work

  Propose “natural” extensions to OpenCL
  Introduce more dynamicity

  Enhance cooperation between runtime systems
and compilers
  Granularity, runtime support for “divisible tasks”
  Feedback for autotuning software

  [PEPPHER European project]

  Demonstrate the relevance of StarPU in other
frameworks
  StarPU+OpenMP+MPI as a target for XcalableMP

  French-Japanese ANR-JST FP3C project

Thank you!

  More information about StarPU
http://runtime.bordeaux.inria.fr

