Exascale Software Center

Pete Beckman

Director
Exascale Technology and Computing Institute

Argonne National Laboratory

Exascale Applications and Technology

Town Hall Meetings April-June 2007
Scientific Grand Challenges Workshops
November 2008 — October 2009

— Climate Science (11/08),

— High Energy Physics (12/08),

— Nuclear Physics (1/09),

— Fusion Energy (3/09),

— Nuclear Energy (5/09),

— Biology (8/09),

— Material Science and Chemistry (8/09),

— National Security (10/09) (with NNSA)

Cross-cutting workshops
— Architecture and Technology (12/09)
— Architecture, Applied Math and CS (2/10)

Meetings with industry (8/09, 11/09)
External Panels

— ASCAC Exascale Charge (FACA)
— Trivelpiece Panel

Scientific Grand Challenges Modeling and

FOREFRONT QUESTIONS IN NUCLEAR SCIENCE AND Simulation at the
THE ROLE OF COMPUTING AT THE EXTREME SCALE Exascale for

Energy and the

* Washington, OC. Environment
Scientific Grand Challenges

Scientific Grand Challenges

CHALLENGES IN CLIMATE CHANGE SCIENCE AND
THE ROLE OF COMPUTING ALE

H2-air LSB flame

“The key finding of the Panel is that there are compelling needs for exascale
computing capability to support the DOE’s missions in energy, national security,
fundamental sciences, and the environment. The DOE has the necessary assets
to initiate a program that would accelerate the development of such capability
to meet its own needs and by so doing benefit other national interests. Failure
to initiate an exascale program could lead to a loss of U. S. competitiveness in
several critical technologies.”

Trivelpiece Panel
Report, January, 2010

To be published in the January 2011 issue of
The International Journal of High Performance
Computing Applications

ROADMAP

Jack Dongarra Alok Choudhary Yutaka Ishikawa Paul Messina John Shalf Aad van der Stean ’ {W I h t
Peta Backman Sudip Dosanjh Fred Johnson Bernd Mohr David Skinner Fred Streitz e C a n O n y S e e a S 0 r

Terry Moore Al Geist Sanjay Kale Matthias Mueller Thomas Sterling Bob Sugar

Jean-Claude Andre Bill Gropp Richard Kenway Wolfgang Nagsl Rick Stevens Shinji Sumimoto d H t h d b t

Jean-Yves Berthou Robert Hamrison Bill Kramer Hiroshi Nakashima William Tang Jeffray Vetter I S a n C e a e a) u We C a n
Taisuke Boku Mark Hereld Jesus Labarta Michael E. Papka John Taylor Robert Wisniewski

Franck Cappello Michael Heroux Bob Lucas Dan Reed Rajeav Thakur Kathy Yelick I t t h t h t d
Barbara Chapman Adolfy Hoisie Barney Maccabe Mitsuhisa Sato Anne Trefethen S e e p e n y e re a n e e S
Xuebin Chi Koh Hotta Satoshi Matsuoka Ed Seidel Marc Snir

to be done.”
SPONSORS @ 2 — Alan Turing (1912 —1954)

oot slence g s
L J
——— MO L (o0}
MR o= s S5O g FUIMsU Bivmia e www.exascale.org

&

5
' N> ﬁ Lok B
.E._.E_E_!].c,_l 'VIDIA. [) ~_' T8 Ui Ty Of Towvon Ig

Biggest Disruption: Node Architecture is Changing

3D Server-on-Chip

* 100x — 1000x more cores
* Heterogeneous cores

Infrastructure chip * New programming model

<° 3d stacked memory

<- Smart memory management

<° Integration on package

carrier

COTS? No....

Potential System Architecture Targets

System peak 2 Pflop/s 200 Pflop/s 1 Eflop/sec 0(1000)
Power 6 MW 15 MW ~20 MW

System memory 0.3PB 5 PB 32-64 PB 0O(100)
Node 125 GF 0.5TF 7TF 1TF 10 TF O(10)— O
performance (100)
Node memory 25GB/s | 0.1 TB/sec 1 TB/sec 0.4 TB/sec 4 TB/sec 0(100)
BW

Node 12 0O(100) O(1,000) O(1,000) 0(10,000) O(100)- O
concurrency (1000)
Total Concurrency | 225,000 0(108) 0(10°) 0(10,000)
Total Node 1.5 GB/s 20 GB/sec 200 GB/sec 0(100)
Interconnect BW

MTTI days O(1day) O(1 day) -0(10)

Processor Parallelism

1.E+06
: . .
1.E+05 1 > 10 years of luddite nirvana NN
. o
ﬁ.oooggg
1.E+04 - C 3N BN O BN B 8
AL L L T H A
88@%000000 o %8 §§8§
1.E+03—l<>88@0'00§§§§§888@©8
0000080 089
° . 0009
1Es02| T ®E% oo © ©Cge°
o 8
606 ©9
o
1.E+01 -
IS
1.E+00 ' l . l r - -
1/1/93 1/1/95 11/97 1/1/99 1/1/01 1/1/03 1/1/05 1/1/07

¢ Top 10 ® Top System

Source: DARPA Exascale Report

v

1/1/09

100,000
90,000
80,000
70,000
60,000
50,000
40,000
30,000
20,000
10,000

0

Average Number of Cores Per Supercomputer

Top20 of the Top500

Exponentiai growth in paralieiism
for the foreseeable future

“It took a decade to be able to efficiently utilize a 10X increase in
processor parallelism, to expect that 1000X can be handled in less
than that is a long stretch”

A Thought Experiment

lim
cores = oo

power = oo
mem/core 2 0

Co-design and System Software

Platform R&D Co-Desian
Architects # Software 9

. Centers
(vendors) Community

Initial Refining
System Design
Design

’ Initial ‘ . Integration,
fch Prototypes Test & QA Deployment,

Applied Research and Development 4

Example: The Big Challenges for System Software

= Parallelism

— Programming Model
— MPI+7?

= System scale

— Operating system and run-time

— Communications and run-time libraries
— 1/0 and file systems

“With petascale computers only a year or two away
there is a pressing need to anticipate and compensate ...”

— Tools, math libraries,

= Fault management § “
— Coordination across components E: v
— Programming model issues? TBD... éw }
= Power management S e e gy e e wh

— Never to be managed by user, but smarter system software

10

Programming at Exascale
What do we expect from the Message Layer?

= Systems with the largest core counts in June 2010 Top500 list

Julich BG/P 294,912 cores
Oak Ridge Cray XT5 224,162 cores
LLNL BG/L 212,992 cores
Argonne BG/P 163,840 cores

LLNL BG/P (Dawn) 147,456 cores
= MPI already runs successfully on these systems
" |n acouple of years, we will have systems with more than a million cores

= MPI will need enhancements, but will keep scaling, provided we improve
key parts

= On exascale, MPlis likely to be used as part of a hybrid programming model much
more so than it is today
— MPI being used to communicate between “address spaces”

— With some other “shared-memory” programming model (OpenMP, UPC, CUDA, OpenCL)
for programming within an address space

= How can MPI support efficient “hybrid” programming on exascale systems?

11

Scaling MPI to Exascale

= Although the original designers of MPI were not thinking of
exascale, MPI was always intended and designed with
scalability in mind. For example:

— A design goal was to enable implementations that maintain very little
global state per process

— Another design goal was to require very little memory management
within MPI (all memory for communication can be in user space)

— MPI defines many operations as collective (called by a group of
processes), which enables scalable efficient implementations

= Nonetheless, some parts of the MPI specification may need to
be fixed for exascale

— Being addressed by the MPI Forum in MPI-3

12

Factors Affecting MPI Scalability

A nonscalable MPI function is one whose time or memory

consumption per process increase linearly (or worse) with the total
number of processes

For example

— If memory consumption of MPI_Comm_dup increases linearly with the no.

of processes, it is not scalable

— If time taken by MPI_Comm_spawn increases linearly or more with the no.

of processes being spawned, it indicates a nonscalable implementation of
the function

The goal should be to use constructs that require only constant space
per process

13

Zero-byte MPI_Alltoallv time on BG/P

Alltoallv Average Time

15000 /
10000 /

5000

30000
25000 /'
5 20000 _
o =&==Alltoallv Time
E
[
@
8D
o
v
I

I.’I I.I.l.l 1] | 1 1 1

o &
W F PP g g g

0+
> 9

Number of Processes

= Thisis just the time to scan the parameter array to determine it is all
0 bytes. No communication performed.

14

Other Issues in the MPI Specification

= Graph Topology
— In MPI 2.1 and earlier, requires the entire graph to be specified on each process
— Already fixed in MPI 2.2 — new distributed graph topology functions
— But existing applications must switch to the new interface

= One-sided communication
— Synchronization functions turn out to be expensive
— Being addressed by RMA working group of MPI-3

= Representation of process ranks

— Explicit representation of process ranks in some functions, such as MPIl_Group_incl
and MPI_Group_excl

— Concise representations should be considered

= Fault tolerance...

15

Communicator Memory Consumption Fixed

= Looking at the source code, we found that IBM’s MPI really only needed
one buffer per thread instead of one buffer per new communicator

= Since there are only four threads on the BG/P, we fixed the problem by
allocating a fixed buffer pool within MPI

= We provided IBM with a patch that fixed the problem and enabled
NEK5000 to run at full scale

Maximum Number of Communicators
g 9000
'c 7000
£ 6000 \\
g 5000 —o— Default N
8 4000
S 3000 —— Buffer Pool \
& 2000 >
£ 1000 e
> 0 \0‘—0
& 0 A > D 0 D AR A
'\r’bb,\’,\/qﬁo%\'\r’\/b“b@%’bb&\?ﬁb
Number of Processes

16

The Problem and the Fix

= MPI_Comm_split does an allgather of the colors and keys from all processes,
followed by a local sort of the keys for the same color

= Inthe case where all ranks pass the same color, the data set to be sorted is of size
p
= The local sort used a simple bubble sort algorithm, which is O(p?)
— The code did have a FIXME comment acknowledging this

= Simply switching the local sort to use quicksort, which is O(plgp), fixed the
problem

OLD NEW
16,384 procs 1.5 sec 0.105 sec
32,768 procs 6.3 sec 0.126 sec
65,536 procs 25.3 sec 0.168 sec
131,072 procs 101.2 sec 0.255 sec

= At this scale, there is a big difference between p? and plgp!

17

Programming Models and Runtime Systems

Unified Stack
f— - - -
GlobaIArrays ----L---- I . . I . .
ARMCI MPI Source compilers

(e.g., UPC, Chapel, TCE, X10, CAF)

High-level Libraries
(e.g., GA, GT, ADLB, Charm++)

Charm++ g \ 4

C H/W
onverse Threading Runtimes /
(e.g., OpenMP Management
et time) Runtimes
. GMC runfime (e.g., Topology)
ADLB

Blue Gene Cray Intel NVIDIA

The key is to provide a unified architecture with multiple levels of capabilities and
ALLOW APPLICATIONS TO BREAK THE LAYERING-> transition path for applications!

Exascale Applications and Technolo!

Context: DOE Planning for Exascale

Goal: Ensure successful deployment of
coordinated exascale software stack on
Exascale Initiative platforms

Current HPC Software Ecosystem is Chaotic

= Software development uncoordinated with hardware features

— (e.g., power mgmt, multicore tools, math libraries, advanced memory
models)

= No global evaluation of key missing components
= Only basic acceptance test software is delivered with platform
— UPC, HPCToolkit, Optimized libraries, PAPI, can be YEARS late

= Vendors often “snapshot” key Open Source components and then
deliver a stale code branch

— Counterexample: A models that work: partnerships with vendors

= Community codes unprepared for sea change in
architectures

= Coordination via contract is poor and only involves 2
parties

20

Exascale Software Center (ESC)

Goal: Ensure successful deployment of coordinated exascale
software stack on Exascale Initiative platforms.

Ultimately responsible for success of software

Identify required software capabilities

Identify gaps
= Design and develop open-source software components

— Both: evolve existing components, develop new ones
— Includes maintainability, support, verification

= Ensure functionality, stability, and performance

= Collaborate with platform vendors to integrate software
= Coordinate outreach to the broader open source

= Track development progress and milestones

21

ESC Organization Chart

DOE
Program HQ

"
~
8
~\,

Software|Components

Co-Design

ESC Software ‘ Pr;:::jLeS ‘ Test & QA ‘ é"!:iﬁ::&ﬂ
Development

Support

= Successful applied R&D teams are built around clear goal of delivering working,
supported packages

= Need balanced risk portfolio... evolution and revolution
= Good software hygiene can’t be someone else’s job

= ESC must work with successful teams existing processes or in some cases, boot
new teams within institutions with excellent history of deployed software

— Probably not feasible to launch new team at site without history of software success

= Formal plans and milestones and reviews are necessary for each component

h’ll

disci pI ine for software (com mon in R&D) i
e / / "\
A ‘ Detniled Design ‘ ,‘/ ': l"; [/ Star aH\ III’
Rg;-mmm A ‘ Co&amr.n‘ X‘ ’ ‘ I I
Review Pelininary Po— "'-“v \. pid Prototypi ;1
R Crzal ILl \""\ Bunld in /Deﬂgn !he
Deien A Sta\ges ~___ . System
Classic “Waterfall” model T “Spiral” model \ ~_

a

_

23

Example Component Evaluation Criteria

Criticality
— Base component already deployed on petascale systems?
— Required for new architecture feature or to address key unresolved petascale issue?

— Is an “exa-only” problem, component not otherwise ready?

— Already in use, or planned use by key applications? Low Risk Moderate Risk
— Requires important vendor integration activities? ESC Supported | Important |
Technical Risk Vendor Critical
. . 2 Supported
— Is path to scaling/extending component well understood Most Critical

— Do existing examples demonstrate feasibility?
— Can development be done incrementally, or is whole functionality required for success?
— Could multiple packages provide functionality?
Project Team History
— How long as team been delivering related software?
— Have they demonstrated successful software engineering discipline?
— s applied research and support for developed software part of their ethos?
Management and Institutional Support
— Is the leadership invested in exascale?
— Isthe team part of a larger organization that provides support for applied development?
— What is the institutional commitment to the ESC?

Evolution &
Revolution

= We can’t continue simple evolution
= We can’t reinvent everything

= Path forward is exciting!

— Will leverage existing billions in HPC
software and applications

— Will encourage and reward disruptive
change

e Dynamic run-time systems and
programming models

e Billion-way parallelism with load
balancing and graph execution models

e Run-time code morphing
= Balance...

A

iVIVA LA EVOLUCION!

