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Sustained Petaflops/s for general applications

v

Hierarchical storage system

» Hard disk drives used as ‘'cache"
» Tape drives used as actual permanent storage media
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Main Objective: Design an efficient disk management policy

v

Today: Writing data to tapes efficiently
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Why new tape access policies?

Main issue
Entire storage space is seamlessly exposed to the user

Today :
Tape 1/O Management

? .
From disk to tape = from memory to disk
Write resilient data efficiently on the parallel tape storage
architecture of BlueWaters
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Tape Related Hardware

» Tapes [~ 500000]
» Serpentine tapes
» Each tape stores up to 1TB of uncompressed data

» Tape Drives [~ 500]
» Tape Libraries [~ 3]
» Manage the tapes

» Each library has robotic arms moving tapes to/from tape drives
» Passthrough to transfer tapes between different libraries

» Mover Nodes [~ 50]

24 cores, 96 GB of RAM
Connected to up to 10 tape drives
Compute parity

Forward /O requests to tape drives

v

vyYyy
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Characteristics of tape drives

» Serpentine tapes

L

> Regular and anti-directional tracks

» Head can only be positioned on key points

» No direct relationship between logical addresses and physical
positions on tape

» Hardware compression: up to 3x
» Sequential accesses ©
» Up to 160 MB/s of uncompressed data

» Random accesses &

» High latencies: average latency is 36.5s )
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Request model

» Requests could be sent by:

» Several users for a classical archival system
» The disk management system, or the batch scheduler

» An I/O request is defined by:
An associated file
Its size
An 1/0 policy
The resiliency scheme X+Y where:
> X denotes the number of data blocks

> Y denotes the number of parity blocks
» For instance : 441, 442, 842...

vyvvyVvYyy
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> Rationale: Writing data in
parallel while balancing tape
usage

TAPE SIZE
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b » Rationale: Writing data in

Do [ Dy | De

o Ds | O || 3 parallel while balancing tape
Di oo | | 2
ol & usage
2 Dy | D =
Das
0

10/ 22



qum Labﬁ;m

(nr Petastale CDmleilim

o

The RAIT policy

MAIN MEMORY

-n » Redundant Array of Independent

T T Tapes, inspired by RAID
Ds Ds o G .
PP e o » Rationale: Writing data in
o Ds | O || 3 parallel while balancing tape
Dis e | | &
O 5 Dy & usage
D. . | D D2y

Das

+ Parity blocks computed “'on
the fly" in RAM

+ Data accessed in parallel

+ Tape occupancy balanced
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The RAIT policy

MAIN MEMORY

-n » Redundant Array of Independent

TD, TD, TDs Tapes, inspired by RAID

[ N N
5. 0 |,
Do [ Dy | De

> Rationale: Writing data in

2D, Ds Z 5 parallel while balancing tape
Dis o | | g
O 5 Dy & usage
D. e D Daq
Dy
0

+ Parity blocks computed “'on — Data is fragmented

the fly” in RAM — Big impact on the level
+ Data accessed in parallel of parallelism of the
+ Tape occupancy balanced system
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» Rationale: Writing data
contiguously while maintaining the
level of parallelism of the system

+ Data accessed
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+ Keep entire level of
parallelism of the system
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The VERTICAL policy

TD, HDD

» Rationale: Writing data
contiguously while maintaining the
level of parallelism of the system

+ Data accessed — No parallelism for a single
sequentially request

+ Keep entire level of — Large local storage required
parallelism of the system for parities

— Dedicated parity tapes,
occupancy is less balanced 1/ 22
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contiguous access to tapes

TAPE SIZE
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» Rationale: Writing data in

D;
L; Dy parallel while enforcing
o, [ D 8 contiguous access to tapes
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+ Parity computed in RAM

+ Data accessed in parallel,
only X tape drives when
reading

+ Larger contiguous data
chunks than RAIT

12/ 22



qum Labﬁa}”

(nr Petastale Compulaum

B

The PARALLEL policy

MAIN MEMORY
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TD, TD; TD, TDs

b 2

5| P .

D, | Do S

D, | Do g
0| ou -

Ds (2%

+ Parity computed in RAM

+ Data accessed in parallel,

only X tape drives when
reading

+ Larger contiguous data
chunks than RAIT

» Rationale: Writing data in
parallel while enforcing
contiguous access to tapes

— Parity on dedicated tapes,
occupancy less balanced

— Big impact on the level of
parallelism of the system
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» Mover nodes can compute parity ‘'on the fly"

» Mover nodes have enough storage space to hold parities (for
VERTICAL policy)
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» Main scheduler, "FIFO First Fit"" policy
» Foreach mover:
> Find unassigned tape drives holding tapes matching policy
> Find other unassigned tape drives
> |f enough tape drives, assign request to current mover,
starting with its matching tape drives

» If the system is unable to handle the request, wait 1) 2
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» Main scheduler, "FIFO First Fit"" policy
» Foreach mover:
> Find unassigned tape drives holding tapes matching policy
> Find other unassigned tape drives
> |f enough tape drives, assign request to current mover,
starting with its matching tape drives

» If the system is unable to handle the request, wait 1) 2
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Random workload generation
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v

Arrival dates: Poisson process with arrival rate A

File size: random log uniform distribution

[/O type chosen uniformly

File reuse probability: 0.15

Resiliency class X + Y chosen among predefined classes with
probability px4y

Data compression rate Cp in [1, 3]

» Parity compression rate Cp in [1, Cp]

15/ 22
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Experimental setup

» Experiments performed using a discrete event based simulator:
SimGrid
» Homogeneous policies

» Platform:
» 1 tape library with 10 robotic arms
» 50 mover nodes
» 500 tape drives (10 per mover node)
» Resiliency schemes:
X+Y |14+0|1+1|24+1|3+1
PX+Y 0.05 | 0.05 0.1 0.2

X+Y | 441442 |6+2|8+2
PX+Y 0.2 0.2 0.2 0.2
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Avg(Response time / size) for small files

> File sizes range from 103 to 10° MB

» PARALLEL best solution

» RAIT close to PARALLEL on low arrival rates

» VERTICAL similar to RAIT on high arrival rates

100 | == PARALLEL &i
@ RAIT
%+ VERTICAL

Avg(Response time / size)

20 40
A (Req / hour)
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Avg(Response time / size) for big files

> File sizes range from 10° to 108 MB
» PARALLEL still best solution
» VERTICAL handles higher arrival rates than RAIT

5

—o- PARALLEL L =
@ RAIT » ¥
w3 VERTICAL

1

Avg(Response time / size)

0.001

0.2 0.4 2

A (Req / hour) 18/ 22
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Influence of RAIT block size

» Fixed )\ value, various RAIT block sizes

» Significant impact on average response time only for small

values
PARALLEL
RAIT
El . VERTICAL
o 1]
2
£ @
@
201
g0 |m
]
o
&0
>
<
T T T T T T
0 200 400 600 800 1000

RAIT block size (MB) 19/ 22
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Tape ocupancy and influence of RAIT block size

» Tape occupancy is a good indicator of data repacking need
» As expected, VERTICAL policy is the best solution

Policy RAIT | PARALLEL | VERTICAL
Avg. Occupancy | 79.3% 71.4% 83.9%
Std. Dev. 0.2 0.4 0.1

» RAIT block size has only a minor impact on tape occupancy:

» 7% difference between 1MB blocks and 1GB blocks.

20/ 22
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Conclusion and perspectives

Contributions
» VERTICAL and PARALLEL I/O policies

» Experimental performance evaluation of every policy through
simulation using randomized workloads
» Evaluation of the impact of RAIT block size
Ongoing & future work
» Pipelining 1/0 requests
» Study heterogeneous policies:
» with static policy allocation on mover nodes

» with dynamic policy allocation on mover nodes

» Handle hardware failures and data reconstruction, and assess
the impact of data reconstruction and repacking on

performance 22
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