
1/ 22

Comparing archival policies for BlueWaters

Franck Cappello, Mathias Jacquelin, Loris Marchal,
Yves Robert and Marc Snir
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Motivation: BlueWaters

I Sustained Petaflops/s for general applications
I Hierarchical storage system

I Hard disk drives used as ‘’cache‘’
I Tape drives used as actual permanent storage media

I Main Objective: Design an efficient disk management policy

I Today: Writing data to tapes efficiently
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Why new tape access policies?

Main issue

Entire storage space is seamlessly exposed to the user

Today :

Tape I/O Management

From disk to tape
?
= from memory to disk

Write resilient data efficiently on the parallel tape storage
architecture of BlueWaters
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Tape Related Hardware

I Tapes [≈ 500000]
I Serpentine tapes
I Each tape stores up to 1TB of uncompressed data

I Tape Drives [≈ 500]

I Tape Libraries [≈ 3]
I Manage the tapes
I Each library has robotic arms moving tapes to/from tape drives
I Passthrough to transfer tapes between different libraries

I Mover Nodes [≈ 50]
I 24 cores, 96 GB of RAM
I Connected to up to 10 tape drives
I Compute parity
I Forward I/O requests to tape drives
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Characteristics of tape drives

I Serpentine tapes

I Regular and anti-directional tracks
I Head can only be positioned on key points
I No direct relationship between logical addresses and physical

positions on tape

I Hardware compression: up to 3x

I Sequential accesses

I Up to 160 MB/s of uncompressed data

I Random accesses

I High latencies: average latency is 36.5s
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Request model

I Requests could be sent by:
I Several users for a classical archival system
I The disk management system, or the batch scheduler

I An I/O request is defined by:
I An associated file
I Its size
I An I/O policy
I The resiliency scheme X+Y where:

I X denotes the number of data blocks
I Y denotes the number of parity blocks
I For instance : 4+1, 4+2, 8+2. . .
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The RAIT policy
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TD1 TD2 TD3 TD4 TD5

I Redundant Array of Independent
Tapes, inspired by RAID

I Rationale: Writing data in
parallel while balancing tape
usage

+ Parity blocks computed ‘’on
the fly‘’ in RAM

+ Data accessed in parallel

+ Tape occupancy balanced

– Data is fragmented

– Big impact on the level
of parallelism of the
system
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The VERTICAL policy

TD1 HDD

I Rationale: Writing data
contiguously while maintaining the
level of parallelism of the system

+ Data accessed
sequentially

+ Keep entire level of
parallelism of the system

– No parallelism for a single
request

– Large local storage required
for parities

– Dedicated parity tapes,
occupancy is less balanced
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The PARALLEL policy
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parallelism of the system
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Simulation model
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I Mover nodes have enough storage space to hold parities (for
VERTICAL policy)
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I Main scheduler, ‘’FIFO First Fit‘’ policy
I Foreach mover:

I Find unassigned tape drives holding tapes matching policy
I Find other unassigned tape drives
I If enough tape drives, assign request to current mover,

starting with its matching tape drives

I If the system is unable to handle the request, wait
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Random workload generation

I Arrival dates: Poisson process with arrival rate λ

I File size: random log uniform distribution

I I/O type chosen uniformly

I File reuse probability: 0.15

I Resiliency class X + Y chosen among predefined classes with
probability pX+Y

I Data compression rate CD in [1, 3]

I Parity compression rate CP in [1,CD ]
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Experimental setup

I Experiments performed using a discrete event based simulator:
SimGrid

I Homogeneous policies

I Platform:
I 1 tape library with 10 robotic arms
I 50 mover nodes
I 500 tape drives (10 per mover node)

I Resiliency schemes:

X + Y 1 + 0 1 + 1 2 + 1 3 + 1

pX+Y 0.05 0.05 0.1 0.2

X + Y 4 + 1 4 + 2 6 + 2 8 + 2

pX+Y 0.2 0.2 0.2 0.2
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Avg(Response time / size) for small files

I File sizes range from 103 to 106 MB
I PARALLEL best solution
I RAIT close to PARALLEL on low arrival rates
I VERTICAL similar to RAIT on high arrival rates
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Avg(Response time / size) for big files

I File sizes range from 106 to 108 MB

I PARALLEL still best solution

I VERTICAL handles higher arrival rates than RAIT
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Influence of RAIT block size

I Fixed λ value, various RAIT block sizes

I Significant impact on average response time only for small
values
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Tape occupancy and influence of RAIT block size

I Tape occupancy is a good indicator of data repacking need

I As expected, VERTICAL policy is the best solution

Policy RAIT PARALLEL VERTICAL

Avg. Occupancy 79.3% 71.4% 83.9%

Std. Dev. 0.2 0.4 0.1

I RAIT block size has only a minor impact on tape occupancy:

I 7% difference between 1MB blocks and 1GB blocks.
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Conclusion and perspectives

Contributions

I VERTICAL and PARALLEL I/O policies

I Experimental performance evaluation of every policy through
simulation using randomized workloads

I Evaluation of the impact of RAIT block size

Ongoing & future work

I Pipelining I/O requests
I Study heterogeneous policies:

I with static policy allocation on mover nodes
I with dynamic policy allocation on mover nodes

I Handle hardware failures and data reconstruction, and assess
the impact of data reconstruction and repacking on
performance
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