Accelerating linear algebra computations with hybrid GPU-multicore systems.

Marc Baboulin

INRIA/Université Paris-Sud

joint work with

Jack Dongarra (University of Tennessee and Oak Ridge National Laboratory) and Stanimire Tomov (University of Tennessee)

4th Workshop INRIA-Illinois

11/23/2010

General framework

How to speed up numerical simulations?

- Exploit advances in hardware (e.g multicore, GPUs, FPGAs, Cell),
 manage to use hardware efficiently for HPC applications
- Better numerical methods

Impact on numerical libraries

- LAPACK, ScaLAPACK, sparse solvers, iterative solvers...have to be rethought and rewritten
- Need for fast Dense Linear Algebra (DLA) kernels in scientific calculations

- Taking advantage of new parallel architectures
 - Towards hybrid GPU-multicore algorithms
 - Mixed precision algorithms

- Taking advantage of new parallel architectures
 - Towards hybrid GPU-multicore algorithms
 - Mixed precision algorithms
- ② Getting faster through statistics
 - Randomization in linear systems
 - Accuracy and performance results

- Taking advantage of new parallel architectures
 - Towards hybrid GPU-multicore algorithms
 - Mixed precision algorithms
- 2 Getting faster through statistics
 - Randomization in linear systems
 - Accuracy and performance results
- 3 Conclusion

- Taking advantage of new parallel architectures
 - Towards hybrid GPU-multicore algorithms
 - Mixed precision algorithms
- 2 Getting faster through statistics
 - Randomization in linear systems
 - Accuracy and performance results
- 3 Conclusion

- Taking advantage of new parallel architectures
 - Towards hybrid GPU-multicore algorithms
 - Mixed precision algorithms
- 2 Getting faster through statistics
 - Randomization in linear systems
 - Accuracy and performance results
- 3 Conclusion

Hardware to software trends

Processor speed improves 59% / year but memory bandwidth only by 23%, latency by 5.5%

Hardware to software trends

Motivation for heterogeneity-aware algorithms

- GPUs evolution: applications far beyond graphics, high bandwidth, programmability (CUDA), memory hierarchy, double precision arithmetic...
- Architectural trends have moved towards heterogeneous (CPU+GPU) designs
- Fully exploit the computational power that each of the hybrid components offers
- Need for linear algebra routines for hybrid systems: there is no self-contained library like LAPACK

Designing algorithms for Multicore+GPU

- Represent LAPACK algorithms as a collection of BLAS-based tasks and dependencies among them

 → rely on high performance of (CU)BLAS
- Abstract us from specificities in programming a GPU
- Properly schedule the tasks execution over the multicore and the GPU
- MAGMA: Matrix Algebra on GPU and Multicore Architectures

DLA library for heterogeneous/hybrid architectures starting with current Multicore+GPU systems LAPACK-style interface

U. Tennessee, U. California Berkeley, INRIA

Task splitting and scheduling

Algorithms as Directed Acyclic Graph (DAG) (small tasks/tiles for multicore)

Task splitting and scheduling

DAGs for hybrid systems (both small and large tasks)

Principles of hybrid implementation

- BLAS-level parallelism where the matrix resides on the GPU (BLAS calls replaced by CUBLAS)
- Offload to the CPU small kernels that are inefficient for the GPU
- Use asynchronism between CPU and GPU whenever possible
- More details in [Dongarra, Tomov, Baboulin, 2010]

Example: Cholesky factorization

$(1) B = B - A A^{T}$	ssyrk	(GPU)
(2) $B = LL^{T}$	spotrf	(CPU)
$(3) D = D - CA^{T}$	sgemm (GPU)	
$(4) D = D \setminus B$	strsm	(GPU)

Hybrid implementation:

- a_ref points to the GPU memory
- GPU kernels are started asynchronously which results in overlapping the GPU's sgemm with CPU's spotrf

Standard LAPACK pseudo-code ssyrk_("L", "N", &jb, &i_3, &c_b13, a_ref(j,1),)	Hybrid Single Core-GPU code cublasSsyrk('L', 'N', jb, i_3. c_b13, a_ref(j,1),)
spotrf_("L", &jb, a_ref(j, j), lda, info) sgemm_("N", "T", &i_3,)	
strsm_("R", "L", "T", "N", &i_3,)	cublasStrsm('R', 'L', 'T', 'N', i_3,)

LU factorization in double precision

Time breakdown for MAGMA QR (single precision)
Intel Xeon (2 x 4 cores @ 2.33 GHz) - GeForce GTX 280 (240 Cores @ 1.30 GHz).

- Taking advantage of new parallel architectures
 - Towards hybrid GPU-multicore algorithms
 - Mixed precision algorithms
- 2 Getting faster through statistics
 - Randomization in linear systems
 - Accuracy and performance results
- 3 Conclusion

PEAK GEMM ON CURRENT MULTICORES vs GPUs

Mixed precision algorithms

- Bulk of the computation in 32-bit arithmetic
- Postprocess the 32-bit solution by refining it into a solution that is 64-bit accurate
 Can be performed on the GPU
- Problem must be "not ill-conditioned"
- Software details in:

M. Baboulin, A. Buttari, J. Dongarra, J. Kurzak, J. Langou, J. Langou, P. Luszczek, S. Tomov,

Accelerating scientific computations with mixed precision algorithms.

Computer Physics Communications, Vol. 180, No 12, pp. 2526-2533 (2009).

Mixed precision algorithms

Example of the Cholesky factorization

1:
$$LL^T \leftarrow A$$
 (ε_s) $\mathcal{O}(n^3)$
2: solve $Ly = b$ (ε_s) $\mathcal{O}(n^2)$
3: solve $L^T x_0 = y$ (ε_s) $\mathcal{O}(n^2)$
do $k = 1, 2, ...$
4: $r_k \leftarrow b - A x_{k-1} (\varepsilon_d)$
5: solve $Ly = r_k$ (ε_s)
6: solve $L^T z_k = y$ (ε_s)
7: $x_k \leftarrow x_{k-1} + z_k$ (ε_d)
check convergence
done

Mixed precision Cholesky factorization

- Taking advantage of new parallel architectures
 - Towards hybrid GPU-multicore algorithms
 - Mixed precision algorithms
- 2 Getting faster through statistics
 - Randomization in linear systems
 - Accuracy and performance results
- 3 Conclusion

- Taking advantage of new parallel architectures
 - Towards hybrid GPU-multicore algorithms
 - Mixed precision algorithms
- Getting faster through statistics
 - Randomization in linear systems
 - Accuracy and performance results
- 3 Conclusion

The issue of pivoting in linear systems

- General square system Ax = b, solved by Gaussian Elimination (GE)
- We interchange rows: partial pivoting (PP) → stability
- Factorization PA = LU, where P permutation matrix
- Partial pivoting implemented in LAPACK, matlab...
- No floating point operation in pivoting but it involves irregular movement of data
- Communication overhead due to pivoting: $\mathcal{O}(n^2)$ comparisons, for some architectures (multicore, GPUs), up to 50% of the global computational time

Other approaches

Communication avoiding algorithms:

- L. Grigori, J. Demmel, and H. Xiang, **Communication avoiding Gaussian elimination** *Supercomupting 2008 proceedings.*
- J. Demmel, L. Grigori, M. F. Hoemmen, and J. Langou, **Communication-optimal** parallel and sequential QR and LU factorizations, *In review, SISC*. Minimize the number of messages exchanged during the panel factorization, stable in practice.

GPU algorithms:

V. Volkov, J. Demmel, LU, QR, Cholesky factorizations using vector capabilities of GPUs, *Lapack Working note 204*.

Reduce the pivoting overhead from 56% to 1-10% by using innovative data structure

Random butterfly transformation (RBT)

- [Parker,1995] proposed to make the matrix sufficiently "random" so that, with probability close to 1, pivoting is not needed
- Precondition A with <u>random</u> matrices: UAV
 to solve Ax = b, we instead solve (UAV)y = Ub followed
 by x = Vy
- Random matrices U and V are chosen among a particular class of matrices called "butterfly matrices" which are of the form $\begin{pmatrix} P & Q \\ R & S \end{pmatrix}$. where P, Q, R and S are diagonal $n/2 \times n/2$ matrices.

Random butterfly transformation (RBT)

- Method:LU with no pivoting on a preconditioned matrix
- The preconditioning is "cheap" ($\mathcal{O}(n^2)$) operations)
- We do not pivot (RBT NP) or just within the first few rows of the panel (RBT LP)
 - \rightarrow we have a fully BLAS 3 algorithm
- RBT may require some steps of iterative refinement in the working precision
- We take advantage of the GPU for all these calculations (preconditioning, factorization in SP, iterative refinement)
- More details in [Baboulin, Dongarra, Tomov, 2008]

- Taking advantage of new parallel architectures
 - Towards hybrid GPU-multicore algorithms
 - Mixed precision algorithms
- Getting faster through statistics
 - Randomization in linear systems
 - Accuracy and performance results
- 3 Conclusion

Accuracy of RBT

Hybrid RBT LU factorization

Load splitting for a hybrid LU factorization (8 cores+GPU)

Performance (DP)

Performance of RBT LU factorization (double precision)

Intel Xeon (2 x 4 cores @ 2.33 GHz), GeForce GTX 280 (240 Cores @ 1.30 GHz).

- Hybrid CPU/GPU library available (MAGMA 0.2) with main linear system solvers, including mixed precision iterative refinement
 More details at http://icl.cs.utk.edu/magma/
- Randomization is very promising for accelerating linear algebra computations on multicore and/or GPU architectures
- Some ongoing work:
 - -Hybrid implementation for SVD and eigensolvers
 - -Apply statistical techniques to estimate condition number for very big problems
- Starting collaboration with Wen-mei Hwu (UIUC) and student Liwen Chang

Some references for this talk

[1] S. Tomov, J. Dongarra, M. Baboulin,

Towards dense linear algebra for hybrid GPU accelerated manycore systems. Parallel Computing, Vol. 36, No 5&6, pp. 232-240 (2010).

[2] M. Baboulin, A. Buttari, J. Dongarra, J. Kurzak, J. Langou, P. Luszczek, S. Tomov, Accelerating scientific computations with mixed precision algorithms. *Computer Physics Communications*, Vol. 180, No 12, pp. 2526-2533 (2009).

[3] S. Tomov, J. Dongarra,

Accelerating the reduction to upper-Hessenberg form through hybrid GPU-based computing.

LAPACK Working Note 219 (2009).

[4] M. Baboulin, J. Demmel, J. Dongarra, S. Tomov, V. Volkov,

Enhancing the performance of dense linear algebra on GPUs.

Supercomputing (SC'08), Austin, USA, Nov. 15-21, 2008.

[5] M. Baboulin, J. Dongarra, S. Tomov,

Some issues in dense linear algebra for multicore and special purpose architectures.

Springer LCNS Series, 9th International Workshop on State-of-the-Art in Scientific and Parallel Computing (PARA'08).

