Accelerating linear algebra computations
with hybrid GPU-multicore systems.

Marc Baboulin

INRIA/Université Paris-Sud
joint work with
Jack Dongarra (University of Tennessee and Oak Ridge National Laboratory)
and Stanimire Tomov (University of Tennessee)

4th Workshop INRIA-lllinois

11/23/2010

Marc Baboulin 1/34 Accelerating linear algebra computations

General framework

How to speed up numerical simulations ?

@ Exploit advances in hardware (e.g multicore, GPUs,
FPGAs, Cell),
manage to use hardware efficiently for HPC applications

@ Better numerical methods

Impact on numerical libraries

@ LAPACK, ScalLAPACK, sparse solvers, iterative
solvers...have to be rethought and rewritten

@ Need for fast Dense Linear Algebra (DLA) kernels in
scientific calculations

Marc Baboulin 2/34 Accelerating linear algebra computations

Outline

o Taking advantage of new parallel architectures
@ Towards hybrid GPU-multicore algorithms
@ Mixed precision algorithms

Marc Baboulin 3/34 Accelerating linear algebra computations

Outline

o Taking advantage of new parallel architectures
@ Towards hybrid GPU-multicore algorithms
@ Mixed precision algorithms

9 Getting faster through statistics
@ Randomization in linear systems
@ Accuracy and performance results

Marc Baboulin 4/34 Accelerating linear algebra computations

Outline

o Taking advantage of new parallel architectures
@ Towards hybrid GPU-multicore algorithms
@ Mixed precision algorithms

9 Getting faster through statistics
@ Randomization in linear systems
@ Accuracy and performance results

e Conclusion

Marc Baboulin 5/34 Accelerating linear algebra computations

Taking advantage of new parallel architectures Towards hybrid GPU-multicore algorithms

Mixed precision algorithms

Outline

o Taking advantage of new parallel architectures

Marc Baboulin 6/34 Accelerating linear algebra computations

Taking advantage of new parallel architectures Towards hybrid GPU-multicore algorithms

Mixed precision algorithms

Outline

o Taking advantage of new parallel architectures
@ Towards hybrid GPU-multicore algorithms

Marc Baboulin 7/34 Accelerating linear algebra computations

Taking advantage of new parallel architectures
Getting faster through statistics
Conclusion

Hardware to software trends

Towards hybrid GPU-multicore algorithms
Mixed precision algorithms

Hybrid / Heterogeneous Designs

Multicore + GPUs

Processor speed improves 59% / year but memory bandwidth
only by 23%, latency by 5.5%

Marc Baboulin 8/34 Accelerating linear algebra computations

Taking advantage of new parallel architectures

Towards hybrid GPU-multicore algorithms
Mixed precision algorithms

Hardware to software trends

Software

DGETF2 E {

[g
.

EXTRACT N, e [) N v
PARALLELISM ool T l@ly =2 T
DGEMM ﬁ @ DEPENDENCIES I

Extracting parallelism from the BLAS routines

HETEROGENEITY-AWARE ALGORITHMS
INNOVATIVE DATA STRUCTURES
PRECONDITIONING TO REDUCE PIVOTING
MIXED PRECISION ALGORITHMS

REDUCE
COMMUNICATION

* o o e

9/34 Accelerati inear algebra computations

Taking advantage of new parallel architectures Towards hybrid GPU-multicore algorithms

Mixed precision algorithms

Motivation for heterogeneity-aware algorithms

@ GPUs evolution: applications far beyond graphics,
high bandwidth, programmability (CUDA), memory
hierarchy, double precision arithmetic...

@ Architectural trends have moved towards heterogeneous
(CPU+GPU) designs

@ Fully exploit the computational power that each of the
hybrid components offers

@ Need for linear algebra routines for hybrid systems: there
is no self-contained library like LAPACK

Marc Baboulin 10/34 Accelerating linear algebra computations

Taking advantage of new parallel architectures Towards hybrid GPU-multicore algorithms

Mixed precision algorithms

Designing algorithms for Multicore+GPU

@ Represent LAPACK algorithms as a collection of
BLAS-based tasks and dependencies among them
— rely on high performance of (CU)BLAS

@ Abstract us from specificities in programming a GPU

@ Properly schedule the tasks execution over the multicore
and the GPU

@ MAGMA: Matrix Algebra on GPU and Multicore
Architectures
DLA library for heterogeneous/hybrid architectures starting
with current Multicore+GPU systems
LAPACK:-style interface
U. Tennessee, U. California Berkeley, INRIA

Marc Baboulin 11/34 Accelerating linear algebra computations

Taking advantage of new parallel architectures Towards hybrid GPU-multicore algorithms

Mixed precision algorithms

Task splitting and scheduling

e

L

%QQ\
y

I
/

/

//-_

N

Algorithms as Directed Acyclic Graph (DAG)
(small taskst/tiles for multicore)

Marc Baboulin 12/34 Accelerating linear algebra computations

Taking advantage of new parallel architectures Towards hybrid GPU-multicore algorithms

Mixed precision algorithms

Task splitting and scheduling

DAGs for hybrid systems
(both small and large tasks)

Marc Baboulin 13/34 Accelerating linear algebra computations

Taking advantage of new parallel architectures Towards hybrid GPU-multicore algorithms

Mixed precision algorithms

Principles of hybrid implementation

@ BLAS-level parallelism where the matrix resides on the
GPU (BLAS calls replaced by CUBLAS)

@ Offload to the CPU small kernels that are inefficient for the
GPU

@ Use asynchronism between CPU and GPU whenever
possible

@ More details in [Dongarra, Tomov, Baboulin, 2010]

Marc Baboulin 14/34 Accelerating linear algebra computations

Taking advantage of new parallel architectures Towards hybrid GPU-multicore algorithms

Mixed precision algorithms

Example: Cholesky factorization

(1)B=B-AA" ssyrk (GPU)
(2)B=LL" spotrf (CPU)
A (3)D=D-CA? sgemm (GPU)
(4D =D\B strsm (GPU)
c D Hybrid implementation:
® a ref points to the GPU memory
® GPU kernels are started asynchronously which results in
overlapping the GPU's sgemm with CPU's spofrf
Standard LAPACK pseudo-code Hybrid Single Core-GPU code
ssyrk_(“L”, “N”, &jb, &3, &c_bl3, a_ref(j,1), ...) cublasSsyrk('L’, 'N', jb, i_3. ¢ b13, a ref{j,1), ...)
spotrf (“L”, &jb, a ref(j, j), Ida, info) cublasGetMatrix(jb, jb, 4, a_ref(j, j), *Ida, work, jb)
) L3 spotrf (“L", &b, work, &b, info)
cublasSetMatrix(jb, jb, 4, work, jb, a ref(j, j), *Ida)
stesmic ("R “L7, LN, Ed 35 cublasStrsm('R", 'L, T', 'N', i 3, ...}

5/34 Accelerating ar algebra computations

Taking advantage of new parallel architectures Towards hybrid GPU-multicore algorithms

Mixed precision algorithms

LU factorization in double precision

240 +=FERMI MAGMA
& FERMI ASM
200 = |ISTANBUL PLASMA
A |STANBUL MKL
=+ GTX280 MAGMA
160
» FERMI Tesla C2050: 448 CUDA cores @ 1.15GHz
3120 SP/DP peak is 1030 / 515 GFlop/s
Ke]
("'5 ISTANBUL AMD 8 socket 6 core (48 cores) @2.8GHz

SP/DP peak is 1075 / 538 GFlop/s

0
1024 3072 5184 7040 9088
Matrix Size

34 Accelerating linear algebra computations

Taking advantage of new parallel architectures

Towards hybrid GPU-multicore algorithms
Mixed precision algorithms

100%

90% B Overhead

Ocpru
O CcPU+GPU
70% HGPU

80%

60%

Time

50%

40%

30%

20%

10%

0%
1 2 3 4 5 6 7 8 9 10

Matrix size x 1,000

Time breakdown for MAGMA QR (single precision)
Intel Xeon (2 x 4 cores @ 2.33 GHz) - GeForce GTX 280 (240 Cores @ 1.30 GHz).

17/34 Accelerating linear algebra computations

Taking advantage of new parallel architectures Towards hybrid GPU-multicore algorithms

Mixed precision algorithms

Outline

o Taking advantage of new parallel architectures

@ Mixed precision algorithms

Marc Baboulin 18/34 Accelerating linear algebra computations

Taking advantage of new parallel architectures

Towards hybrid GPU-multicore algorithms

Mixed precision algorithms

PEAK GEMM ON CURRENT MULTICORES vs GPUs

400
375
350
325
300
275
250
225
200
175
150
125
100
75
50
25
0

GFlop/s

SINGLE PRECISION

Intel Xeon Harpertown
(2x4@ 2.33 GHz)

Quadro FX 5600
(120 @ 1.5 GHz)

Intel Xeon Tigerton
“4x4@ 2.4GHD

o
Nel
S
T
&
B s GeForce GTX 280
== - (240 @ 1.29 GHz)
=
DOUBLE PRECISION

19/34

Accelerating linear algebra computations

Taking advantage of new parallel architectures Towards hybrid GPU-multicore algorithms

Mixed precision algorithms

Mixed precision algorithms

@ Bulk of the computation in 32-bit arithmetic

@ Postprocess the 32-bit solution by refining it into a solution
that is 64-bit accurate
Can be performed on the GPU

@ Problem must be "not ill-conditioned”

@ Software details in:
M. Baboulin, A. Buttari, J. Dongarra, J. Kurzak, J. Langou, J. Langou,
P. Luszczek, S. Tomov,
Accelerating scientific computations with mixed precision algorithms.

Computer Physics Communications , Vol. 180, No 12, pp. 2526-2533 (2009).

Marc Baboulin 20/34 Accelerating linear algebra computations

Taking advantage of new parallel architectures Towards hybrid GPU-multicore algorithms

Mixed precision algorithms

Mixed precision algorithms

Example of the Cholesky factorization

1. LLT+ A (es) o(n®)
2: solve Ly = b (es) O(n?)
3:solvel’xg=y (es) o(n?)
dok=1,2, ..
4: ry < b— Axx_1(gq)
5: solve Ly = r, (eg)
6: solve LTz, = y (es)
7: Xy Xk—1 + Zk (q)
check convergence
done

Marc Baboulin 21/34 Accelerating linear algebra computations

Taking advantage of new parallel architectures Towards hybrid GPU-multicore algorithms

Mixed precision algorithms

Mixed precision Cholesky factorization

Solving Ax = b in DP accuracy, A is SPD

(Performance on an Intel Xeon @ 2.33 GHz + NVIDIA GeForce GTX 280)

300

250

200 S

= SP Factorization
150 = Mixed Prec. Solver

CPU Iterations

Mixed Prec. Solver

GPU Iterations
100 = DP Solver

7

Gflop/s

1 2 3Matrix $ize x 1,800 6

icLdsor 2eUNIVERSITYof .
Im\,\n\gwnmm; “TENNESSEE Slide 15/13
AORTORY B

22/34 Accelerating ar algebra computations

Randomization in linear systems

Getting faster through statistics Accuracy and performance results

Outline

9 Getting faster through statistics

23/34 Accelerating linear algebra computations

Randomization in linear systems

Getting faster through statistics Accuracy and performance results

Outline

9 Getting faster through statistics
@ Randomization in linear systems

Marc Baboulin 24/34 Accelerating linear algebra computations

Randomization in linear systems

Getting faster through statistics Accuracy and performance results

The issue of pivoting in linear systems

@ General square system Ax = b, solved by Gaussian
Elimination (GE)

@ We interchange rows: partial pivoting (PP) — stability

@ Factorization PA = LU, where P permutation matrix

@ Partial pivoting implemented in LAPACK, matlab...

@ No floating point operation in pivoting but it involves
irregular movement of data

@ Communication overhead due to pivoting: O(n?)
comparisons, for some architectures (multicore, GPUs), up
to 50% of the global computational time

Marc Baboulin 25/34 Accelerating linear algebra computations

Randomization in linear systems

Getting faster through statistics Accuracy and performance results

Other approaches

@ Communication avoiding algorithms:
L. Grigori, J. Demmel, and H. Xiang, Communication avoiding Gaussian
elimination Supercomupting 2008 proceedings.
J. Demmel, L. Grigori, M. F. Hoemmen, and J. Langou, Communication-optimal
parallel and sequential QR and LU factorizations, /n review, SISC.
Minimize the number of messages exchanged during the
panel factorization, stable in practice.

@ GPU algorithms:
V. Volkov, J. Demmel, LU, QR, Cholesky factorizations using vector
capabilities of GPUs, Lapack Working note 204.
Reduce the pivoting overhead from 56% to 1-10% by using
innovative data structure.

Marc Baboulin 26/34 Accelerating linear algebra computations

Randomization in linear systems

Getting faster through statistics Accuracy and performance results

Random butterfly transformation (RBT)

@ [Parker,1995] proposed to make the matrix sufficiently
"random” so that, with probability close to 1, pivoting is not
needed

@ Precondition A with random matrices: UAV
to solve Ax = b, we instead solve (UAV)y = Ub followed
by x = Vy

@ Random matrices U and V are chosen among a particular
class of matrices called "butterfly matrices” which are of

the form (; g) where P, Q, R and S are diagonal

n/2 x n/2 matrices.

Marc Baboulin 27/34 Accelerating linear algebra computations

Randomization in linear systems

Getting faster through statistics Accuracy and performance results

Random butterfly transformation (RBT)

@ Method:LU with no pivoting on a preconditioned matrix
@ The preconditioning is "cheap” (O(n?) operations)
@ We do not pivot (RBT NP) or just within the first few rows of

the panel (RBT LP)
— we have a fully BLAS 3 algorithm

@ RBT may require some steps of iterative refinement in the
working precision

@ We take advantage of the GPU for all these calculations
(preconditioning, factorization in SP, iterative refinement)

@ More details in [Baboulin, Dongarra, Tomov, 2008]

Marc Baboulin 28/34 Accelerating linear algebra computations

Randomization in linear systems

Getting faster through statistics Accuracy and performance results

Outline

9 Getting faster through statistics

@ Accuracy and performance results

Marc Baboulin 29/34 Accelerating linear algebra computations

Randomization in linear systems
Accuracy and performance results

Getting faster through statistics

Accuracy of RBT

ERBT NP LU (max)
F+RBT NP LU (min)
+=RBTLP LU
(NB + invert)
< RBTLP LU (NB)
<+ RBTLP LU
(NB+64)
PP LU (LAPACK)

NPA-LUI/NAI

1 2 3 4 5 6 7

Matrix size x 1000

30/34 Accelerating linear algebra computations

Randomization in linear systems
Accuracy and performance results

Getting faster through statistics

Hybrid RBT LU factorization

7NB

1Core + 1GPU 7 Cores

Panel Update trailing Update trailing
factorization sub-matrix sub-matrix

Load splitting for a hybrid LU factorization (8 cores+GPU)

Marc Baboulin 31/34 Accelerating linear algebra computations

Getting faster through statistics SETCEIHEERIED [R PRI
Accuracy and performance results

Performance (DP)

¥ @ Eight Cores - 1 GPU
(FBT LP LU)

=@ Ejght Cores - 1 GPU
(FBT LU)

= Singe Core - 1 GPU
(FBT LP LU)

== Single Core - 1 GPU
(RET LU)

¥ Single Core - 1 GPU
(PP LU from V. Valkav)

==16 Cores / Tigerton
(PwP LU from PLASMA)

=4 § Cores / Harpertown

0 (PWP LU from PLASMA)

1 2 3 4 5 6 T 8 10 12

Matrix size x 1000

Gflop/s

Performance of RBT LU factorization (double precision)
Intel Xeon (2 x 4 cores @ 2.33 GHz), GeForce GTX 280 (240 Cores @ 1.30 GHz).

32/34 Accelerating ar algebra computations

Conclusion

Hybrid CPU/GPU library available (MAGMA 0.2) with
main linear system solvers, including mixed precision

iterative refinement

More details at http://icl.cs.utk.edu/magma/

Randomization is very promising for accelerating linear
algebra computations on multicore and/or GPU
architectures

Some ongoing work:

-Hybrid implementation for SVD and eigensolvers

-Apply statistical techniques to estimate condition number
for very big problems

Starting collaboration with Wen-mei Hwu (UIUC) and
student Liwen Chang

Marc Baboulin 33/34 Accelerating linear algebra computations

Conclusion

Some references for this talk

[1] S. Tomov, J. Dongarra, M. Baboulin,
Towards dense linear algebra for hybrid GPU accelerated manycore systems.
Parallel Computing, Vol. 36, No 5&6, pp. 232-240 (2010).

[2] M. Baboulin, A. Buttari, J. Dongarra, J. Kurzak, J. Langou, P. Luszczek, S. Tomoy,
Accelerating scientific computations with mixed precision algorithms.
Computer Physics Communications , Vol. 180, No 12, pp. 2526-2533 (2009).

[3] S. Tomov, J. Dongarra,

Accelerating the reduction to upper-Hessenberg form through hybrid GPU-based
computing.

LAPACK Working Note 219 (2009).

[4] M. Baboulin, J. Demmel, J. Dongarra, S. Tomov, V. Volkov,

Enhancing the performance of dense linear algebra on GPUs.
Supercomputing (SC’08), Austin, USA, Nov. 15-21, 2008.

[5] M. Baboulin, J. Dongarra, S. Tomov,

Some issues in dense linear algebra for multicore and special purpose
architectures.

Springer LCNS Series, 9th International Workshop on State-of-the-Art in Scientific and
Parallel Computing (PARA’08).

Marc Baboulin 34/34 Accelerating linear algebra computations

	Main Talk
	Taking advantage of new parallel architectures
	Towards hybrid GPU-multicore algorithms
	Mixed precision algorithms

	Getting faster through statistics
	Randomization in linear systems
	Accuracy and performance results

	Conclusion

