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General framework

How to speed up numerical simulations ?
Exploit advances in hardware (e.g multicore, GPUs,
FPGAs, Cell),
manage to use hardware efficiently for HPC applications
Better numerical methods

Impact on numerical libraries
LAPACK, ScaLAPACK, sparse solvers, iterative
solvers...have to be rethought and rewritten
Need for fast Dense Linear Algebra (DLA) kernels in
scientific calculations
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Outline

1 Taking advantage of new parallel architectures
Towards hybrid GPU-multicore algorithms
Mixed precision algorithms

2 Getting faster through statistics
Randomization in linear systems
Accuracy and performance results

3 Conclusion
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Hardware to software trends

Processor speed improves 59% / year but memory bandwidth
only by 23%, latency by 5.5%
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Motivation for heterogeneity-aware algorithms

GPUs evolution: applications far beyond graphics,
high bandwidth, programmability (CUDA), memory
hierarchy, double precision arithmetic...
Architectural trends have moved towards heterogeneous
(CPU+GPU) designs
Fully exploit the computational power that each of the
hybrid components offers
Need for linear algebra routines for hybrid systems: there
is no self-contained library like LAPACK
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Designing algorithms for Multicore+GPU

Represent LAPACK algorithms as a collection of
BLAS-based tasks and dependencies among them
→ rely on high performance of (CU)BLAS
Abstract us from specificities in programming a GPU
Properly schedule the tasks execution over the multicore
and the GPU
MAGMA: Matrix Algebra on GPU and Multicore
Architectures
DLA library for heterogeneous/hybrid architectures starting
with current Multicore+GPU systems
LAPACK-style interface
U. Tennessee, U. California Berkeley, INRIA
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Task splitting and scheduling

Algorithms as Directed Acyclic Graph (DAG)
(small tasks/tiles for multicore)
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Task splitting and scheduling

DAGs for hybrid systems
(both small and large tasks)
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Principles of hybrid implementation

BLAS-level parallelism where the matrix resides on the
GPU (BLAS calls replaced by CUBLAS)
Offload to the CPU small kernels that are inefficient for the
GPU
Use asynchronism between CPU and GPU whenever
possible
More details in [ Dongarra, Tomov, Baboulin, 2010 ]
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Example: Cholesky factorization
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Time breakdown for MAGMA QR (single precision)
Intel Xeon (2 x 4 cores @ 2.33 GHz) - GeForce GTX 280 (240 Cores @ 1.30 GHz).
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Mixed precision algorithms

Bulk of the computation in 32-bit arithmetic
Postprocess the 32-bit solution by refining it into a solution
that is 64-bit accurate
Can be performed on the GPU
Problem must be ”not ill-conditioned”
Software details in:
M. Baboulin, A. Buttari, J. Dongarra, J. Kurzak, J. Langou, J. Langou,
P. Luszczek, S. Tomov,
Accelerating scientific computations with mixed precision algorithms.

Computer Physics Communications , Vol. 180, No 12, pp. 2526-2533 (2009).
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Mixed precision algorithms

Example of the Cholesky factorization

1: LLT← A (εs) O(n3)
2: solve Ly = b (εs) O(n2)

3: solve LT x0 = y (εs) O(n2)
do k = 1,2, ...

4: rk ← b − Axk−1 (εd )
5: solve Ly = rk (εs)
6: solve LT zk = y (εs)
7: xk ← xk−1 + zk (εd )

check convergence
done
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Mixed precision Cholesky factorization
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Solving Ax = b in DP accuracy, A is SPD
(Performance on an Intel Xeon @ 2.33 GHz + NVIDIA GeForce GTX 280)
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The issue of pivoting in linear systems

General square system Ax = b, solved by Gaussian
Elimination (GE)
We interchange rows: partial pivoting (PP)→ stability
Factorization PA = LU, where P permutation matrix
Partial pivoting implemented in LAPACK, matlab...
No floating point operation in pivoting but it involves
irregular movement of data
Communication overhead due to pivoting: O(n2)
comparisons, for some architectures (multicore, GPUs), up
to 50% of the global computational time
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Other approaches

Communication avoiding algorithms:
L. Grigori, J. Demmel, and H. Xiang, Communication avoiding Gaussian

elimination Supercomupting 2008 proceedings.

J. Demmel, L. Grigori, M. F. Hoemmen, and J. Langou, Communication-optimal

parallel and sequential QR and LU factorizations, In review, SISC.
Minimize the number of messages exchanged during the
panel factorization, stable in practice.
GPU algorithms:
V. Volkov, J. Demmel, LU, QR, Cholesky factorizations using vector

capabilities of GPUs, Lapack Working note 204.
Reduce the pivoting overhead from 56% to 1-10% by using
innovative data structure.
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Random butterfly transformation (RBT)

[ Parker,1995 ] proposed to make the matrix sufficiently
”random” so that, with probability close to 1, pivoting is not
needed
Precondition A with random matrices: UAV
to solve Ax = b, we instead solve (UAV )y = Ub followed
by x = Vy
Random matrices U and V are chosen among a particular
class of matrices called ”butterfly matrices” which are of

the form
(

P Q
R S

)
. where P, Q, R and S are diagonal

n/2× n/2 matrices.
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Random butterfly transformation (RBT)

Method:LU with no pivoting on a preconditioned matrix
The preconditioning is ”cheap” (O(n2) operations)
We do not pivot (RBT NP) or just within the first few rows of
the panel (RBT LP)
→ we have a fully BLAS 3 algorithm
RBT may require some steps of iterative refinement in the
working precision
We take advantage of the GPU for all these calculations
(preconditioning, factorization in SP, iterative refinement)
More details in [ Baboulin, Dongarra, Tomov, 2008 ]
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Accuracy of RBT
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Hybrid RBT LU factorization

Load splitting for a hybrid LU factorization (8 cores+GPU)
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Performance (DP)

Performance of RBT LU factorization (double precision)
Intel Xeon (2 x 4 cores @ 2.33 GHz), GeForce GTX 280 (240 Cores @ 1.30 GHz).
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Hybrid CPU/GPU library available (MAGMA 0.2) with
main linear system solvers, including mixed precision
iterative refinement
More details at http://icl.cs.utk.edu/magma/
Randomization is very promising for accelerating linear
algebra computations on multicore and/or GPU
architectures
Some ongoing work:
-Hybrid implementation for SVD and eigensolvers
-Apply statistical techniques to estimate condition number
for very big problems
Starting collaboration with Wen-mei Hwu (UIUC) and
student Liwen Chang
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Some references for this talk

[1] S. Tomov, J. Dongarra, M. Baboulin,
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Parallel Computing, Vol. 36, No 5&6, pp. 232-240 (2010).
[2] M. Baboulin, A. Buttari, J. Dongarra, J. Kurzak, J. Langou, P. Luszczek, S. Tomov,
Accelerating scientific computations with mixed precision algorithms.
Computer Physics Communications , Vol. 180, No 12, pp. 2526-2533 (2009).
[3] S. Tomov, J. Dongarra,
Accelerating the reduction to upper-Hessenberg form through hybrid GPU-based
computing.
LAPACK Working Note 219 (2009).
[4] M. Baboulin, J. Demmel, J. Dongarra, S. Tomov, V. Volkov,
Enhancing the performance of dense linear algebra on GPUs.
Supercomputing (SC’08), Austin, USA, Nov. 15-21, 2008.
[5] M. Baboulin, J. Dongarra, S. Tomov,
Some issues in dense linear algebra for multicore and special purpose
architectures.
Springer LCNS Series, 9th International Workshop on State-of-the-Art in Scientific and
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