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wanted: more robust, efficient, and principled solver
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algebraic multilevel projections

poroblem: AMG designed for basic problems

oroblem: AMG does not scale

problem: no sense of optimality in AMG




show the potential for AMG
highlight optimality

high-performance progress

goal: strengthen and increase applicablility
through the Joint Lab
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AMG Framework

e aggregation: groups of fine nodes form coarse nodes
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¢ an initial interpolation pattern

¢ find an optimal interpolation operator P that contains low energy
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AMG Components: what we need

e an idea of the low energy: physics, training, intuition AB ~ (
® a strength measure to determine strong node couplings sz:j

e a parallel aggregation method Agg

¢ [ow complexity, optimal interpolation P

e pbetter cycling
- richer coarse grids

- “parallel” cycling




*** QOlson, Schroder, Tuminaro, A new perspective
on strength measures in algebraic multigrid, 2009

—volution Measure

1. drop point source at a node J2
?
2. evolve/diffusion point source with A . .
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3. evaluate diffusivity at neighbors in comparison to known low energy
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= Bell, Olson, Lloyd Aggregation, 2008
“** Bell, Dalton, Olson, AMG on the GPU, 2010

Flexible aggregation

¢ we use two approaches: * heed to combine

1. MIS(2): parallel coarse grids == serial coarse grids |® need to develop
autotuning for

heterogeneous archs

2. shortest-path: ability to tune bandwidth

« Lloyd
e Standard

1 2
10 10
Nodes per Aggregate




optimizing energy

e Pshould have low energy
(low A-normor A* A-norm)

1. determine sparsity pattern
2. minimize energy column-wise (parallel)

*** Qlson, Schroder, Tuminaro, A general interpolation
Strategy for algebraic multigrid using energy-
minimization, 2010.

e need to push toward
more demanding hon-
symmetric applications

e need a formal non-
symmetric process

h std. opt.
1/64 >150 24
1/128 | >150 28
1/256 | >150 33
1/612 | >150 33




Wave problems (Helmholtz)

e AMG problem: standard “low energy”
modes (constant) break Nyquist rate

e answer: introduce wave modes at all levels &

tw cos(0)x+sin(0)y

multiple wave modes:; = ¢

. eve
infuse wave modes: =>

1
evel 2: =0,

adapt to grid through relaxation: => Ae™* = ()

optimize interpolation: == || P|| 4+ 4



=** Olson, Schroder, A smoothed aggregation
multigrid method for Helmholtz problems, 2010.

¢ heed to extend to Maxwell
equations
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e need to test robustness for lossy
media

left singular vector

pPpwW h/2 h/4 h/8 h/12

injected mode 50 11 15 25 54

h
9
10,0 19 11 11 11 14
3009 10 10 11 11
.09 10 11 11 11

Al 14 15 17 21 22

pgmres iterations, complexity



“* QOlson, Schroder, Smoothed aggregation multigrid
solvers for high-order discontinuous galerkin methods,
2010.

High-order discontinuous Galerkin

¢ different types of d.o.f.

¢ |oss of locality

® |[ncrease In condition number

e most heuristics in AMG break
down
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High-order discontinuous Galerkin: Poisson

key ingredients:

- conforming aggregations step
» adapt the near null space

* optimal interpolation

needs:

» extend to Maxwell equations
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AMG on the GPU

need for acceleration

multicore difficult to optimize for AMG

efficient GPU kernels: SpMV




“** Bell, Dalton, Olson, AMG on the GPU

AMG on the GPU

e Cusp (Cuda) framework

e have developed hooks for
use with Jumpshot

¢ target: setup+solve < 1sec
1M dof problem

¢ host: many seconds




Solve phase

e relies on fast SpMV e performance hit: transfer
e performance hit: GPU kernel e Device: likes sparsity
launches e host: likes density
“+—1 1M node example, 100 iterations | -
. |Host time 17983.4 ms __
0| |Device time 3029.1 ms
" |6 times faster on device ]

Level



AMG Solve phase: parallel operations

[ O(n) J Presmooth { O(nnz) }

Compute Residual
/ Sparse
/

Restrict Matrix-Vector
Vector Multiply
Arithmetic

Solve Coarse

- /

Prolongate

Coarse Grid Solver
(i.e. LU) Correct




Sparse Mat-Vec

Large number of nonzeros. Does not
fit in cache. Bandwidth is critical.

High speedup factors on device.
Speedup dependent on sparsity
pattern, data structure, etc.
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Unknown level where performance on

device performs on par or worse than
host.
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Small number of nonzeros. Higher
density. Device is slower than host.
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Setup phase

e strength of connection

® aggregation

¢ tentative interpolation

e smoothed interpolation

¢ franspose

e Galerkin triple product

e relaxation

1M node example

Host time 4558.97 ms
Device time 716.86 ms

6 times faster on device

Number of levels ) MIS(2)
Level Unknowns Nonzeros
1 1048576 5238784
2 146193 1586645
3 8680 128908
4 363 5291
5 18 172




Percentsetuptme

Setup Phase

0.4

0.3

setup phase time per level on device

Level

B =tength
B 2ggregation
[ tentative
[ Jprolongator
[ ltanspose
[ Iproduct
B smoother
B cpectral radius

Percentsetup time
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collaboration: E&M

Scientific objectives

@ Design, analysis and validation of numerical methods and high performance
resolution algorithms for the computer simulation of wave propagation problems
in complex domains and heterogeneous media

Research directions

@ Systems of linear PDEs with variable coefficients

@ Discretization

@ Discontinuous finite element (DG) methods on unstructured meshes
@ High order polynomial interpolation
@ p-, h- and hp-adaptivity
@ Numerical treatment of complex propagation media models
e Resolution

@ Accurate and efficient time integration strategies
@ Domain decomposition (DD) methods

o High peformance computing

@ Algorithmic aspects (parallel resolution methods)
@ Implementation issues (mixed SIMD/MIMD programming model)




collaboration: E&M

Computational electromagnetics

@ System of Maxwell equations
@ Dispersive propagation media

@ Applications involve the interaction of
electromagnetic waves with,
@ biological tissues (biocem),

© geological media (georadar). James Clerk Maxwell (1831-1879)

Computational geoseismics

@ System of elastodynamic equations
@ Viscoelastic propagation media

@ Applications deal with the propagation of seismic waves,
© generated by an explosive source (earthquake dynamics),
© in the deep subsurface (resource prospection).




Nachos team, Domain

Decomposition

Classical (non-optimized) Schwarz algorithm
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Method L2 erroron E; | Ns | # iter BiCGStab (¢ = 107°)
DGTH-P, 0.16400 4 317
DGTH-P> 0.05701 4 650
DGTH-P5 0.05519 4 1067
DGTH-Ps4 0.05428 4 1619
DGTH-P; 0.05487 4 352




Nachos team, Domain Decomposition

Optimized Schwarz algorithm (case 1)

Method | L2 erroron E, | Ns | # iter BiCGStab (¢ = 107°)
DGTH-P, 0.16457 4 52 (6.1) @
- 0.16467 16 83 (4.7)
DGTH-P, 0.05705 4 61 (10.7)
- 0.05706 16 109 ( 6.7)
DGTH-P3 0.05519 4 71 (15.0)
- 0.05519 16 139 ( 8.2)
DGTH-P,4 0.05427 4 83 (19.5)
- 0.05527 16 170 (10.3)
DGTH-P; 0.05486 4 49 (7.2)
- 0.05491 16 81 (5.1)
a4 iter classical /4t iter optimized




directions for collaboration

Current implementation in 2D and 3D

@ At the discrete level, Schur complement type system

o Krylov solver for the interface system
o Sparse direct solver (MUMPS) at the subdomain level

@ Message passing programming using MPI

Potential collaboration topics in the framework of the joint laboratory

@ On the methdological side

AMG method for DG discretization of the frequency domain Maxwell equations

@ On the computational side

AMG used as a subdomain solver in the 3D case

Hybrid programming for exploiting multiple parallelism levels
(e.g. multi-threaded AMG)




