Joint LabBFa

* .for Petascale Computation _.

o

Concurrency-Optimized I/0
For Visualizing HPC Simulations:
An Approach Using Dedicated I/O Cores

Matthieu Dorier, Franck Cappello, Marc Snir,
Bogdan Nicolae, Gabriel Antoniu

4th workshop of the Joint Laboratory for Petascale Computing, Urbana, November 2010

NCSA — University of Illinois at Urbana-Champaign
INRIA Saclay — Grand-Large Team
INRIA Rennes— KerData Team
ENS de Cachan - Brittany Uek

W’NR]A NJ:N§A Q’/L{__S

o

Joint Labﬂ;@ e\ Y
M\ '\ ufor Petascale Computation 20 . .
’ - s I .-‘. -

“ontext: 1/0 efficient visualization
for post-petascale HPC simulations

The Problem:

Poor I/0 concurrency control
Simulation/Backup/Visualisation

The Challenge:

Efficient concurrent I/0
Efficiently visualize and store data
without impacting the simulation

Visualization

Idmt Labola

Jfor Petascale omputanon 2

Case study:
CM1 simulation/visualization pipeline

Tornado simulation /_ 100K cores
(CM1) using MPI

11108

100 GPFS servers
e || fie || fie || fle |

60 variables (arrays)
Parallel filesystem (GPFS) 10 to 100Mb per file

l l l More than 100K files per min

Distributed rendering engines

(Vislt)

@ 3

10% of nodes used
- for rendering

]dmt LabBta

for Petascale omputanon Ay

‘he CM1 parallel simulation
Cloud Model 1st Generation (CM1)

» Sky discretization along a 3D grid: uses an approximation of the finite
element method

* Layout: two dimensional grid of subdomains
 MPI processes are mapped onto this layout

* Each MPI process solves equations on its subdomain, then exchange

ghost data with its neighborhood
Initialize, time t = 0

0 1 2 While t < time max
T T Solve equations
3 4 5 Exchange ghost data (MPI)

If t $ K== 0 then
Write file (HDF5)
Endif
t++
Endwhile

Joint Lab'gf;@ _
* .for Petascale Computation _.

s

Output description

" Output format:

— HDF5 (Hierarchical Data Format), providing dataset organization
and description through metadata

— Gzip compression (level 4)
— One file per core per backup
— One backup every K steps (K configurable)

* In a BlueWaters deployement:
— 100K files per backup, written at the same time

— Backup every 100 steps (depending on the configuration, 100
steps take 25 to 400 seconds)

— Only 100 GPFS servers to handle all requests - bottleneck!

Joint LabBFa

* .for Petascale Computation _.

General behavior

Process 1 Process2 Process3 Process 4

* All 100K processes have to
wait for the slowest to
complete its write Comp | | Comp | fComp | | Comp

. . e e Barrier
Write section characterization

on current approach

—_
O =N Wdhs OO N®®OOo

<

=TT

- Max

o Av Barrier

time (sec)

vV Min’
v Vv
v Comp Comp Comp Comp
0 1000 2000 3000 4000 5000 6000 7000 8000
number of variables written (2d arrays)

Joint Lab@‘)
(\ | ! «for Petascale Computation 200\
.

" The visualization: Vislt

* Developed at LLNL, Department of Energy (DOE) Advanced Simulation
and Computing Initiative (ASCI)

e Relies on VTK and distributed rendering

kt
30
?5

R0

17.5

12.5

Jaint LabBtatol _ 2
* .for Petascale Computation _.

-

lenge: how to efficiently cope
with various read patterns?

* Vislt parallel rendering engine deployed on 10% of computational
resources (rule of thumb)

A wide variety of purposes - a wide variety of patterns
e |- TN DI PPT P PRUET
—

E.g.: How can 10.000 rendering engines
gather and render only horizontal slices of E==

a subset of variables (arrays) stored in
more than 100.000 files and accessed
through 100 GPFS servers?

Need to filter the data at some point...

Joint Labﬂ;&

* .for Petascale Computation _.

P

“This problem is not specific

e Other simulation applications write one file/core/step and
have a similar behavior, such as:

— The GTC Fusion Modeling Code (Gyrokinetic Toroidal Code),
studying micro-turbulence in magnetic confinement fusion,
using plasma theory

— The Pixie3D code, 3D extension of MHD (Magnetic-Hydro-
Dynamics) core

 The « too-many-files » problem and the problem of post-
processing and visualizing them already subject to studies

Joint Labﬂ;&

* .for Petascale Computation _.

P

Issues and possible solutions

* Current approach involves:

— Inefficient concurrent writing (waiting for the slowest process)
— Too many files at every step bottleneck in GPFS

— A read patterns too different from the write patterns

* Possible solutions:
— Using PHDFS5 to write in a collective manner, but
 Still slow compared to individual writes
* Does not allow any compression
— Using filters
* In the simulation - slows down the simulation

* |n the visualization tools = slows down the visualization "

Joint LabBlat I

* .for Petascale Computation .

-

What we are looking for

e Optimize simulation/visualization I/O concurrency

Reduce overhead in write sections

Reduce the overall number of files

Adapt the output layout to the way it will be read by the
visualization

Increase the compression level

Leverage the capabilities of HDF5

11

]dmt LabBta

for Petascale omputanon Ay

PrOpsI:use dedicated 1/O cores

* One core per node

handles a shared
buﬂ:er Comp Comp Comp

* The computation .
cores write in the

shared buffer (possible,
as CM1 only uses 2% of
RAM out of 128GB/node)

ETNT

 The write phase of Comp | | Gomp | | Comp

the dedicated I/O
core overlaps the next
computation phase — _

One node 12

4

IOmt LabBrato
.for Petascale Computauon

I\

"\ :

Potential usage of the spare time

 The |/O core may:
— Filter data
— Reformat data for more efficient visualization
— Redistribute data
— Better compress data
— Directly handle Vislt requests (inline visualization)

— Avoid read pressure on GPFS

13

Joint Lab'gf;@ _
* .for Petascale Computation _.

s

Implementation

"« Adedicated MPI process in each node
* |PCs are used to handle communication between each
computation core and the I/O core

— A shared memory segment is opened by the |/O core when the
application starts

— Each computation core writes at a specific offset in the segment
(no sharing, no synchronization)

]
L T

Offset Offset Offset Offset
Client O Client 1 Client 2 Client 3 14

Joint Labﬂ;&

* .for Petascale Computation _.

P

Implementation

“ ¢ @Goal: gather data into larger arrays 0 1 2
—> we want cores to handle —
contiguous subdomains 3 4 5

 Some modifications required in the
simulation

— A new hierarchical layout built
from the knowledge of “node
ID" and “‘core ID”’

— A precise organization of
processes within cores and
nodes

15

Joint Labﬂ;&

* .for Petascale Computation _.

P

Experimental settings

On BluePrint: * On BlueWaters:
— 64 nodes, 16 cores/node — 3200 nodes, 32 cores/node
— 2 GPES servers — 100 GPFS servers
e Domain: Domain:
— 960x960x300 pts — 12800x12800x1000 pts
« Output example (for 15 * Output example (for 15 variables
variables enabled, enabled, uncompressed):
uncompressed): — Backup every 100 steps (i.e.
— Backup every 50 steps (i.e. every 2min)
every 3min) — 96 MB/core/backup
— 15 MB/core/backup — 102400 files/backup (with
— 1024 files/backup (with current approach)
current approach) — Total: about 10 TB/backup

16

— Total: about 16 GB/backup

Jaint Laboratory - 414
* .for Petascale Computation _. .
ol s
» <’ . .

Data layout

* Current approach
— 16 cores/node participating in computation
— 32x32 grid layout
— 30x30x300 pts per subdomain

* Proposed approach
— 15 cores/node participating in computation, 1 10-core/node
— 8x8 nodes layout, 5x3 cores layout
— 40x24 grid layout

— 24x40x300 pts per subdomain

17

Joint Lab'gf;@

* .for Petascale Computation _.

s

omparison of the two approaches:

seen from computational cores

Write section characterization

comparison between current approach and 10 dedicated core
10 - .

& Max TTW (s) current
approach

o Av TTW (s) current
approach

vV Min TTW (s) current
approach

& Max TTW (s) using
dedicated core

time (sec)

. v

v |

0 1000 2000 3000 4000 5000 6000 7000 80
number of variables written (2d arrays)

O = N W A 00O N O ©

18

Joint Labﬂ;@

* .for Petascale Computation .

-

Theoretical limits

* First limit: write time must be less than computation time, in
order to overlap the I/O without slowing down the application.

Write section in |0 cores

and computation time
250 ~
Mo o o &
T 150 & Real Av
8 TTW (s)
aEJ 100 9 Comp time
T s

|

0 10002000 30004000 5000 6000 7000 8000
number of output variables (2d arrays)

19

Jaint Labota .
M\ '\ ufor Petascale Computation .

o

Theoretical limits

e Second limit: the gain of overlapping I/O and computation
must be worth removing one core from computation

Process 1 Process2 Process3 Process 4

Comp Comp Comp Comp
Comp Comp Comp

Barrier IPCs

EIVTN
SWIL

Barrier

Comp Comp Comp

Comp Comp Comp Comp

 J ~— —_—— —

One node

* Achieved in 1hour: 814 steps with the current
approach, 866 with the new one 20

Joint Lab'gf;@

* .for Petascale Computation _.

L 2P ’

7 Summary: using dedicated 1/0 cores

* The proposed solution consists in
— Removing one core per node from computation
— Using this core to gather, filter and flush the data
* Proof-of-concept implementation
— Uses MPI processes

— Opens shared memory segments to handle the IPCs

21

Joint Lab'gf;@

* .for Petascale Computation _.

L 2P ’

Contribution at this stage

an approach which...

* Reduces overhead in |/O phases

* Spares time for filtering, compressing and other post-
processing

* Globally achieves higher performance on BluePrint

Considering the experiments conducted on BluePrint
and the theoretical analysis, we think this approach
will also achieve higher performance on BlueWaters

22

Jaint Laboratory - 414
* .for Petascale Computation _. .
ol s
» <’ . .

Next steps: evaluation

* \ery short term: more extensive experiments
— Hybrid programming models
— Larger scales
— Could be used with other back-ends, such as PHDF5
— Great results with CM1, need to evaluate genericity

— GTC (nuclear fusion simulation)

23

Joint Lab'gf;@

* .for Petascale Computation _.

s

Next steps: leverage the 1/O cores

e Goal: use the I/O core spare time to reduce visualization |/O

— The /O core can stay connected to Vislt for inline visualization
— Avoid reading GPFS files, directly read from 1/O cores

— Generate summaries (metadata) for specific visualization
patterns
— Some visualization requests could only rely on metadata

— Reduce concurrent accesses to the shared segment

— Adaptive metadata management depending on the desired
visual output

24

Jaint Labota .
M\ '\ ufor Petascale Computation .

Nexitps: concurrency-optimized
metadata management

* |dea: leverage the BlobSeer approach

— A concurrency-optimized, versioning-based data management
scheme (KerData team, INRIA Rennes — Bretagne Atlantique)
— Relies on concurrency-optimized metadata management
— Writes generates new data chunks and metadata, no overwriting

— Multiple versions of the data stay available and can be used for advanced post-
processing or visualization

— Concurrent reads and writes without sync

Joint Labﬂ;ta

* .for Petascale Computation .

o

Nex‘tps: concurrency-optimized
metadata management

* Leveraging BlobSeer: what is needed?

— Adapt BlobSeer’s metadata layer to the needs of visualization
— Efficient GPFS back-end for BlobSeer

 What can we expect?

— Enhanced support for inline visualization

* Only from metadata, with no sync

* From the I/O cores, with no sync

— Longer term: even less GPFS files overall

 Initial approach: one file/core/step

* QOur approach: one file/node/step

* Future: one file/multiple nodes/step :

Joint Lab'gf;@

* .for Petascale Computation _.

Thank you

27

