
On scheduling the checkpoints
of exascale applications

Marin Bougeret, Henri Casanova, Mikaël Rabie,
Yves Robert, and Frédéric Vivien

INRIA, École normale supérieure de Lyon, France
Univ. of Hawai‘i at Mānoa



Motivation and framework

Framework

A very very large number of processing elements (e.g., 220)

A platform that may fail (like any realistic platform)

A very large application to be executed

=⇒ a failure may occur before completion

Questions

When should we checkpoint the application?

Should we always use all processors?



Hypotheses and notations

Overall size of work: W
Checkpoints of fixed cost: c
(e.g., write on disk the contents of each processor memory)

Recovery cost after failure: r

Homogeneous platform
(processing elements have same speed and same failure
distribution)



State of the art

Applications should be checkpointed periodically

Is that the optimal behavior?

Several proposed values for the period

Young:
√

2× c ×MTBF (1st order approximation)

Daly (1):
√

2× c × (r + MTBF) (1st order approximation)

Daly (2): η ×MTBF− c , where

η = ξ2 + 1 + Lambert(−e−(2ξ2+1)), and ξ =
√

c
2×MTBF

(higher order approximation)

How good are these approximations?
What is the optimal value?
What about failures not following an exponential distribution ?



State of the art

Applications should be checkpointed periodically
Is that the optimal behavior?

Several proposed values for the period

Young:
√

2× c ×MTBF (1st order approximation)

Daly (1):
√

2× c × (r + MTBF) (1st order approximation)

Daly (2): η ×MTBF− c , where

η = ξ2 + 1 + Lambert(−e−(2ξ2+1)), and ξ =
√

c
2×MTBF

(higher order approximation)

How good are these approximations?
What is the optimal value?
What about failures not following an exponential distribution ?



Presentation outline

1 Motivation and framework

2 Starting simple: the one processor case

3 Parallelism and duplication

4 Simulations

5 Conclusions and perspectives



Plan

1 Motivation and framework

2 Starting simple: the one processor case

3 Parallelism and duplication

4 Simulations

5 Conclusions and perspectives



Principle of recursive approach (1)

Notation

Eopt(W, t): optimal expectation of makespan, for a work of
size W, knowing that the last failure happened t units of time
ago.

W1(W, t): size of first chunk, for a work of size W, knowing
that the last failure happened t units of time ago.

Psucc(W , t): probability that a work of size W is completed
before next failure, knowing that the last failure happened t
units of time ago.

Underlying hypothesis

The history of failures does not have any impact, only the
time elapsed since the last failure does (renewal process).



Principle of recursive approach (2)

Eopt(W , t) =



Principle of recursive approach (2)

Probability of success

Time needed

Psucc(W1(W , t) + c, t) (W1(W , t) + c + Eopt(W −W1(W , t), t +W1(W , t) + c))

compute the remainder
Time needed to

the 1st chunk
to compute

Eopt(W , t) =



Principle of recursive approach (2)

from scratch
to compute W

(1− Psucc(W1(W , t) + c, t)) (Elost(W1(W , t) + c, t) + r + Eopt(W , 0))

Probability of failure

+

Time elapsed
before the failure

occured

Time needed

Time needed to

Psucc(W1(W , t) + c, t) (W1(W , t) + c + Eopt(W −W1(W , t), t +W1(W , t) + c))

compute the remainderthe 1st chunk
to compute
Time needed

Probability of success

Eopt(W , t) =



Failures following an exponential distribution

General expression

Eopt(W, t) =
Psucc(W1(W, t) + c , t)

× (W1(W, t) + c + Eopt(W −W1(W, t), t + W1(W, t) + c))
+(1− Psucc(W1(W, t) + c , t)) (Elost(W1(W, t) + c , t) + r + Eopt(W, 0))

Simplified with memoryless property

Eopt(W) =
Psucc(W1(W) + c)

× (W1(W) + c + Eopt(W −W1(W)))
+(1− Psucc(W1(W) + c)) (Elost(W1(W) + c) + r + Eopt(W))

Remarks

The first chunk successfully executed will be of size W1(W)
Whatever the scenario, the size of the chunks that will be
executed successfully are known before hand. There are
n0(W) chunks.



Optimal checkpointing policy

Eopt(W) =

n0(W)∑
i=1

(
Wi (W)+c+

1−Psucc(Wi (W)+c)

Psucc(Wi (W)+c)
(Elost(Wi (W)+c)+r)

)

Eopt(W) =

(
1

λ
+ r

) n0(W)∑
i=1

(eλ(Wi (W)+c)−1)

Theorem

The expectation of the makespan is minimized when checkpoints

are periodic of period Topt = 1+Lambert(−e−(1+λc))
λ and

n0(W) = W
Topt

, with Lambert(x)eLambert(x) = x. Then,

Eopt(W) =
eλ(Topt+c)−1

Topt
W
(

1

λ
+ r

)



Approximation and dynamic programming

Idea

Time discretization: chunk sizes must be a multiple of a
quantum u

Dynamic programming solution

Eopt(W, t) = min
W1=i.u
1≤i≤W

u

{
Psucc(W1+c , t) (W1+c+Eopt(W−W1, t+W1+c))

+(1−Psucc(W1+c , t)) (Elost(W1+c , t)+r+Eopt(W, 0))

Theorem

We have an algorithm in O
((W

u

)3
(1 + c

u )
)
to compute Eopt(W).

=⇒ numerical approximations



Numerical application

Some meaningless values: W = 40, c = r = 0.5, MTBF=20

Chunk sizes for exponential law

4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45 4.45

Chunk sizes for Weibull law (with k = 0.5)

3.15 4 4.65 5.1 5.45 5.75 5.85 6.1

(If no failure occurs during the execution)



Plan

1 Motivation and framework

2 Starting simple: the one processor case

3 Parallelism and duplication

4 Simulations

5 Conclusions and perspectives



Motivation

Context

A very very large number m of identical processors
(same processing speed, same failure distribution)

The questions

On how many processors (≤ m) the application must be
executed to minimize the expectation of the makespan?

Could task duplication decrease the expectation of the
makespan?



Hypotheses

Parallelization

Application is perfectly parallelizable Tpar(p) =
Tseq

p

Duplication

We have g groups of p processors (g × p ≤ m)

Failures

Follow Exponential distribution of parameter λ

Property

The failure distribution for a group follows an exponential
distribution of parameter pλ
=⇒ when no duplication, reuse the one processor solution



About illustration examples

For illustration purposes

Sequential application divided in 3 chunks and run
sequentially on a single processor.

Each “row” on the Gantt charts should be viewed as a group
of p processors

Legend

Failed attempt

Successful attempt



Most naive approach

Principle: no synchronization between groups

P1

P2

Pg

Time

To compute the completion time: need the distribution of the
completion time on a single processor

Naive, inefficient, and no analytical solution



Most naive approach

Principle: no synchronization between groups

P2

P1

Pg

Time

To compute the completion time: need the distribution of the
completion time on a single processor

Naive, inefficient, and no analytical solution



Most naive approach

Principle: no synchronization between groups

P2

P1

Pg

Time

To compute the completion time: need the distribution of the
completion time on a single processor

Naive, inefficient, and no analytical solution



Most naive approach

Principle: no synchronization between groups

P2

P1

Pg

Time

To compute the completion time: need the distribution of the
completion time on a single processor

Naive, inefficient, and no analytical solution



Most naive approach

Principle: no synchronization between groups

Pg

P2

P1

Time
Completion time

To compute the completion time: need the distribution of the
completion time on a single processor

Naive, inefficient, and no analytical solution



Synchronized restart after failure

Principle: if the first attempt to execute a chunk fails on all
groups, they all retry, simultaneously starting after the last failure

P2

Pg

P1

Time



Synchronized restart after failure

Principle: if the first attempt to execute a chunk fails on all
groups, they all retry, simultaneously starting after the last failure

P1

P2

Pg

Time



Synchronized restart after failure

Principle: if the first attempt to execute a chunk fails on all
groups, they all retry, simultaneously starting after the last failure

P1

P2

Pg

Time



Synchronized restart after failure

Principle: if the first attempt to execute a chunk fails on all
groups, they all retry, simultaneously starting after the last failure

P1

P2

Pg

Time
End of step 1



Synchronized restart after failure: expectation

Probability that at least one group runs at least a time t before
failing:

Pr(X (g) ≥ t) = Pr

(
max
i≤g

(Xi ) ≥ t

)
.

Proposition: distribution law

The distribution law of the system is:

d Pr(X (g) = u) = g Pr(X1 < u)g−1d Pr(X1 = u)

Where X1 is the random variable for a group, and g the number of
duplications.

Expectation of makespan: previous distribution should be
substituted in the recursion formula...



Non-synchronized restarts

Principle: each group re-tries to execute the chunk as soon as
possible after each of its failures, as long as no group succeeds

P2

Pg

P1

Time



Non-synchronized restarts

Principle: each group re-tries to execute the chunk as soon as
possible after each of its failures, as long as no group succeeds

P1

P2

Pg

Time



Non-synchronized restarts

Principle: each group re-tries to execute the chunk as soon as
possible after each of its failures, as long as no group succeeds

P1

P2

Pg

Time



Non-synchronized restarts

Principle: each group re-tries to execute the chunk as soon as
possible after each of its failures, as long as no group succeeds

End of step 1

P1

P2

Pg

Time



Non-synchronized restarts

Principle: each group re-tries to execute the chunk as soon as
possible after each of its failures, as long as no group succeeds

End of step 1

P1

P2

Pg

Time

E(p,g)
true start (t) ≤

E(p,1)
true start(t)

g



Majoration of the expectation of the makespan

Expectation of the makespan for a single chunk of size W

E(p,g)(W ) = E(p,g)
true start

(
W

p
+ c , r

)
+
W

p
+c ≤

E(p,1)
true start

(
W
p + c , r

)
g

+
W

p
+c

Over-approximation

E(p,g)(W ) =
E(p,1)
true start

(
W
p + c , r

)
g

+
W

p
+ c

Expectation for the overall work

E(p,g)(W) =

n0(W)∑
i=1

E(p,1)
true start

(
Wi (W)

p + c , r
)

g
+

Wi (W)

p
+ c





Computing E(p,1)
true start (t, r)

Random variables

Xi : time elapsed between the (i − 1)-th and i-th failures

N such that: XN ≥ t, X1 < t, ..., XN−1 < t

E(p,1)
true start (t, r) = E(X1 + r + X2 + r + ...+ XN−1 + r)

= E
((∑N

i=1 Xi

)
+ (N − 1)r − XN

)
= E

(∑N
i=1 Xi

)
+ (E(N)− 1)r − E(XN)

= E(X1)E(N) + (E(N)− 1)r − E(XN) (Wald)

As E(N) = epλt , E(X1) = 1
pλ , and E(XN) = 1

pλ + t, we find:

E(p,1)
true start (t, r) =

1

pλ
epλt +

(
epλt − 1

)
r − 1

pλ
− t.



“Best” solution

Theorem

The best policy is to have periodic checkpoints of period T such
that

Topt = min

{
Tcand,

W
p

}
with(

Tcand −
1

pλ

)
epλ(Tcand+c)(1 + pλr) = (g − 1)c − r − 1

pλ
.

The expectation of the makespan is then:

E(p,g)(W) =
W

λp2gTopt

(
epλ(Topt+c) + p(g − 1)λ(Topt + c)

+pλr
(
epλ(Topt+c) − 1

)
− 1

)
Best = optimal for the over-approximation of the expectation of
makespan



Plan

1 Motivation and framework

2 Starting simple: the one processor case

3 Parallelism and duplication

4 Simulations

5 Conclusions and perspectives



Simulation settings

c = 5 minutes

r = 5 minutes

W = 1000 years

m = 220 cores

Mean Time Between Failures = 1, 10, or 100 years



Exponential distribution (MTBF = 10 years)
lo
g 2
(m

ak
es
pa
n)

218216210 212 220214

number of cores

15

20

25

Daly’s period (2)
Daly’s period (1)
Young’s period
No failures



Exponential distribution (MTBF = 10 years)
lo
g 2
(m

ak
es
pa
n)

218216210 212 220214

number of cores

15

20

25

Daly’s period (2)
Daly’s period (1)
Young’s period
No failures

Optimal period



Exponential distribution (MTBF = 10 years)
lo
g 2
(m

ak
es
pa
n)

218216210 212 220214

number of cores

15

20

25

Optimal period + duplication

Daly’s period (2)
Daly’s period (1)
Young’s period
No failures

Optimal period



Impact of duplication

MTBF = 10 years. Best makespan (without duplication) reached
using 219 cores

Without Duplication With Duplication

Number of cores 219 2× 218

Average makespan 344,493 206,718

Compared to a full parallelization, a duplication using the same
number of processor leads to a gain of 25.6% (on average).



Weibull distribution (k=0.5, MTBF = 10 years)
lo
g 2
(m

ak
es
pa
n)

218216210 212 220214

number of cores

15

20

25

Daly’s period (2)
Daly’s period (1)
Young’s period
No failures



Weibull distribution (k=0.5, MTBF = 10 years)
lo
g 2
(m

ak
es
pa
n)

218216210 212 220214

number of cores

15

20

25

Daly’s period (2)
Daly’s period (1)
Young’s period
No failures

Exp. optimal period



Weibull distribution (k=0.5, MTBF = 10 years)
lo
g 2
(m

ak
es
pa
n)

218216210 212 220214

number of cores

15

20

25

Exp. optimal period/4

Daly’s period (2)
Daly’s period (1)
Young’s period
No failures

Exp. optimal period



Weibull distribution (k=0.5, MTBF = 10 years)
lo
g 2
(m

ak
es
pa
n)

218216210 212 220214

number of cores

15

20

25

Exp. optimal period/4 + duplication
Exp. optimal period/4

Daly’s period (2)
Daly’s period (1)
Young’s period
No failures

Exp. optimal period



Weibull distribution (k=0.5, MTBF = 1000 years)
lo
g 2
(m

ak
es
pa
n)

218216210 212 220214

number of cores

15

20

25

Exp. optimal period/4

Daly’s period (2)
Daly’s period (1)
Young’s period
No failures

Exp. optimal period



Weibull distribution (k=0.5, MTBF = 1000 years)
lo
g 2
(m

ak
es
pa
n)

218216210 212 220214

number of cores

15

20

25

Exp. optimal period/4 + duplication
Exp. optimal period/4

Daly’s period (2)
Daly’s period (1)
Young’s period
No failures

Exp. optimal period



Plan

1 Motivation and framework

2 Starting simple: the one processor case

3 Parallelism and duplication

4 Simulations

5 Conclusions and perspectives



Conclusions

(Yet another) clean proof for the optimal checkpointing for
failures following an exponential distribution

A duplication scheme that can (almost) be analytically
optimized

When the platform is sufficiently large, the checkpointing cost
sufficiently expensive, or the failures frequent enough, one
should limit the application parallelism and duplicate tasks

For Weibull distributions, checkpointing intervals defined for
exponential laws of same MTBF are suboptimal, no existing
formula delivers good performance



Perspectives

What is the optimal period for a Weibull distribution?

What should be the checkpointing policy for a Weibull
distribution ?


	Motivation and framework
	Starting simple: the one processor case
	Parallelism and duplication
	Simulations
	Conclusions and perspectives

