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concurrence with the computation

Two difficulties
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Manage & characterize the requests
Managing the concurrency on the request content

‣ Common solution : copy or explicit synchronization (ex: MPI_Wait)

‣ Proposition : ForgetOnSend language construct to declare the contents 
which are not used after their sending anymore

‣ Wait-by-necessity : message-sending driven synchronization
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5.2.3 Automatic synchronization: Wait-by-necessity

As a fourth solution, we propose the use of a wait-by-necessity [Caromel, 1989] mechanism
where the data is wrapped into an object which is synchronized with the request reception.
This mechanism is similar to the one used for futures, described in Section 3.1.3.

When a request is sent, a future is created and immediately returned, as a placeholder for
the result. Then, when the activity wants to use the result of the request before it has
been actually received, the wait-by-necessity mechanism occurs and block the activity until
it receives the real awaited result. This is a data-driven synchronization. In our case, the
encapsulation must be done explicitly instead of seamlessly because the data comes from the
user application rather than the middleware, as the result of a request is.

A
computing
routines

wait-by-
necessity

stub

data

A

wait-by-
necessity

stub

computing
routines data

(An inefficient way) (An efficient way)

Figure 5.2: Computing routines are located with the main activity (A)

However, encapsulating data which is often used is usually a bad idea. A naive way to
encapsulate the data is depicted on the left diagram of the Figure 5.2. On this diagram, data
is directly encapsulated with stub as its only entry point. The computing routines, which
are working a data, are located with the activity A. Then, when these computing routines
are running, each access to data would be controlled by the stub with a wait-by-necessity
mechanism which would block the access on data if the related request is not received by the
remote activity yet.
This solution is not efficient and we can expect that it will drop the performance of the
computing routines dramatically.

A better way is proposed on the right side of the Figure 5.2. In this solution, the computing
routines are wrapped as well, with the data they are working on. This way, computing routines
have direct access on data and the wait-by-necessity synchronization only occurs when calling
the computing routines. This solution would provide similar performance as running without
any encapsulation.
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Definition (Functional Request) :
Functional requests are those which are related to 
the computation.
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Definition (Read-only Request) :
Read-only requests are those whose the service will 
have no side effect on the targeted activity.
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Definition (Sterile Request) :
A sterile request is a request whose the service will 
not imply the sending of a request, except to itself or 
its sender. These outgoing requests are sterile as well.



Losing rendezvous
Algorithm

‣ each activity has multiple sending queues 
(SQK): one per remote activity

‣ concurrency on the request content is 
handled by the ForgetOnSend contract, or 
the wait-by-necessity mechanism

‣ causal ordering is ensured with the sterility 
and the read-only characterizations

‣ incompatible requests are managed with 
synchronizations on the sending queues
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6.2. AN ALGORITHM FOR PARALLEL SENDING 61

to use the Wait-by-necessity (wbn)), then we must wait until the sending queue of the
destination to be empty for direct sending α. It is the per-destination wait : SQB = ∅.

3. if the conditions are met, i.e. the α request is both sterile and candidate for the dele-
gation, then we can delegate the rendez-vous of this request sending by adding α to the
sending queue of its destination.

αA,B

wait until
blocker_list = ∅

is not loopback ?
(A "= B)

yes

no

is sterile ?

yes

no wait until
∀K,SQK = ∅

directSend(αA,B)

is candidate
for delegation ?

(fos or wbn)

yes

no wait until
SQB = ∅

SQB .add(αA,B)

Rendez-vous is not delegated
Call is blocking

Rendez-vous is delegated
Call is non-blocking

Figure 6.2: Decision process for activity A when sending a request α to B

Sending a request
α from A to B



Losing rendezvous
Algorithm

‣ each activity has multiple sending queues 
(SQK): one per remote activity

‣ concurrency on the request content is 
handled by the ForgetOnSend contract, or 
the wait-by-necessity mechanism

‣ causal ordering is ensured with the sterility 
and the read-only characterizations

‣ incompatible requests are managed with 
synchronizations on the sending queues

24

6.2. AN ALGORITHM FOR PARALLEL SENDING 61

to use the Wait-by-necessity (wbn)), then we must wait until the sending queue of the
destination to be empty for direct sending α. It is the per-destination wait : SQB = ∅.

3. if the conditions are met, i.e. the α request is both sterile and candidate for the dele-
gation, then we can delegate the rendez-vous of this request sending by adding α to the
sending queue of its destination.

αA,B

wait until
blocker_list = ∅

is not loopback ?
(A "= B)

yes

no

is sterile ?

yes

no wait until
∀K,SQK = ∅

directSend(αA,B)

is candidate
for delegation ?

(fos or wbn)

yes

no wait until
SQB = ∅

SQB .add(αA,B)

Rendez-vous is not delegated
Call is blocking

Rendez-vous is delegated
Call is non-blocking

Figure 6.2: Decision process for activity A when sending a request α to B

Sending a request
α from A to B



Losing rendezvous
Algorithm

‣ each activity has multiple sending queues 
(SQK): one per remote activity

‣ concurrency on the request content is 
handled by the ForgetOnSend contract, or 
the wait-by-necessity mechanism

‣ causal ordering is ensured with the sterility 
and the read-only characterizations

‣ incompatible requests are managed with 
synchronizations on the sending queues

25

6.2. AN ALGORITHM FOR PARALLEL SENDING 61

to use the Wait-by-necessity (wbn)), then we must wait until the sending queue of the
destination to be empty for direct sending α. It is the per-destination wait : SQB = ∅.

3. if the conditions are met, i.e. the α request is both sterile and candidate for the dele-
gation, then we can delegate the rendez-vous of this request sending by adding α to the
sending queue of its destination.

αA,B

wait until
blocker_list = ∅

is not loopback ?
(A "= B)

yes

no

is sterile ?

yes

no wait until
∀K,SQK = ∅

directSend(αA,B)

is candidate
for delegation ?

(fos or wbn)

yes

no wait until
SQB = ∅

SQB .add(αA,B)

Rendez-vous is not delegated
Call is blocking

Rendez-vous is delegated
Call is non-blocking

Figure 6.2: Decision process for activity A when sending a request α to B

Sending a request
α from A to B



Losing rendezvous
Algorithm

‣ each activity has multiple sending queues 
(SQK): one per remote activity

‣ concurrency on the request content is 
handled by the ForgetOnSend contract, or 
the wait-by-necessity mechanism

‣ causal ordering is ensured with the sterility 
and the read-only characterizations

‣ incompatible requests are managed with 
synchronizations on the sending queues

26

6.2. AN ALGORITHM FOR PARALLEL SENDING 61

to use the Wait-by-necessity (wbn)), then we must wait until the sending queue of the
destination to be empty for direct sending α. It is the per-destination wait : SQB = ∅.

3. if the conditions are met, i.e. the α request is both sterile and candidate for the dele-
gation, then we can delegate the rendez-vous of this request sending by adding α to the
sending queue of its destination.

αA,B

wait until
blocker_list = ∅

is not loopback ?
(A "= B)

yes

no

is sterile ?

yes

no wait until
∀K,SQK = ∅

directSend(αA,B)

is candidate
for delegation ?

(fos or wbn)

yes

no wait until
SQB = ∅

SQB .add(αA,B)

Rendez-vous is not delegated
Call is blocking

Rendez-vous is delegated
Call is non-blocking

Figure 6.2: Decision process for activity A when sending a request α to B

Sending a request
α from A to B



Losing rendezvous
Algorithm

‣ Receiving an inappropriate request can 
induce a causal ordering violation

27

Receiving a request
α sent from A to B

62 CHAPTER 6. LOSING RENDEZ-VOUS

Global wait

When a request is not sterile a causal ordering disruption is possible, as exposed on Figure 5.4.
In such a case, the rendez-vous cannot be delegated making the call blocking. Then to prevent
any causal ordering disruption, we must wait until there is no pending request to send on the
local activity anymore. Thus, we wait until all the sending queues SQK are empty.

Per-destination wait

If the request αA,B is sterile, but its rendez-vous cannot be delegated because neither the
ForgetOnSend constraint nor the Wait-by-necessity is applicable, we must perform a blocking
call. However, in such a case, we only have to wait until the sending queue SQB is empty.

Delegate the rendez-vous

If the request sending meet the two requirements, which are the candidature for delegation
and the sterility, then the request αA,B can be appended to the sending queue SQB which is
responsible of the sendings to the remote activity B.

6.2.2 Receiving of a request

The receiving of a request αA,B is detailed on Figure 6.3. This flowchart provides the decision
process which is followes when receiving a request α sent from an activity A on B.

In all the cases, the final step will be the appending of αA,B to the request queue of the activity
B. However, depending on the request type, sendings of the whole activity could be blocked
or unblocked.

αa,b

is sterile ?

yes

no
blocker_list.remove(a)

is read-only ?

yes

no
blocker_list.add(a)

RQ.add(αa,b)

Figure 6.3: Decision process for activity b when receiving a request α from a
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α on their respective activities.
Then, the service of β causes the sending of a new request γ to C which could be received
and served by C before α.
We’ve called this case a direct overtaking line.

This violation cannot be detected unless the use of causal information added in the requests.

5.3.3 Case 3: Indirect loss of causal ordering

A

B

C

αβ

γ δ

Figure 5.5: Case 3 : Indirect overtaking line - Loss of causal ordering

On Figure 5.5, the activity A sends two request concurrently. First, α is sent to C, then β
is sent to B. As with the previous example, the actual sending of β occurs earlier than the
actual sending of α.

However, in this case, the service of β does not raise a new request sending, but the activity
C sends a request γ to B, whose the service emits a new request δ, to C.
In such scenario, it can happens that the receiving of δ on C occurs earlier than the receiving
of α.
The problem here, is that the sending of δ can be a consequence of the service of β which
occurs earlier, thus causing a causal ordering violation.

As for with the case 3, this violation cannot be detected unless adding some causal information
into the sent requests.

To enable the middleware to perform some optimizations, an accurate description of the
program behavior is necessary. Thus we would like to distinguish between the different types
of request, according to their behavior when served on the remote activity.

5.4 Characterizing the different types of requests

In this section, we introduce the Sterility, as a type of requests. Based on this distinction, the
middleware could adopt a particular behavior to optimize the communication by delegating,
when possible, the rendez-vous to a concurrent process of the main activity.
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Summary

‣ Managing the concurrence on the request content
‣ ForgetOnSend language construct
‣ Wait-by-necessity with integrated computing routines

‣ Characterizing the requests
‣ Functional, Read-Only
‣ Sterility definition

‣ Algorithms to lose the rendezvous
‣ Request sending
‣ Request receiving
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6.4. PERFORMANCE 65

Source Code 6.1 Example using the ForgetOnSend and the Sterility to delegate the rendez-
vous
1 public class AO {

2 @Sterile

3 public void foo(double[] largeArray) {

4 // do some computation, while keeping the sterility constraint
5 }

6

7 @Sterile

8 public void bar(MyData myData) {

9 // do some computation, while keeping the sterility constraint

10 } }

1 public class MyData implements WaitByNecessityWrapper {

2 private double[] myArray;

3
4 @Override

5 public Object getData() {

6 return myArray;

7 }

8

9 public void compute() {

10 // do some computation directly on myArray

11 } }

1 public static void main(String[] args) {
2 AO ao = (AO) PAActiveObject.newActive(AO.class.getName(), null);

3 MyData mydata = (MyData) PAActiveObject.newWaitByNecessityWrapper(

4 MyData.class.getName(), null);

5 PAActiveObject.setForgetOnSend(ao, "foo");

6 ao.foo(largeArray);

7 ao.bar(mydata);

8 ... // do some computation using neither largeArray nor mydata variables

9 md.compute();

10 }

6.4. PERFORMANCE 65

Source Code 6.1 Example using the ForgetOnSend and the Sterility to delegate the rendez-
vous
1 public class AO {

2 @Sterile

3 public void foo(double[] largeArray) {

4 // do some computation, while keeping the sterility constraint
5 }

6

7 @Sterile

8 public void bar(MyData myData) {

9 // do some computation, while keeping the sterility constraint

10 } }

1 public class MyData implements WaitByNecessityWrapper {

2 private double[] myArray;

3
4 @Override

5 public Object getData() {

6 return myArray;

7 }

8

9 public void compute() {

10 // do some computation directly on myArray

11 } }

1 public static void main(String[] args) {
2 AO ao = (AO) PAActiveObject.newActive(AO.class.getName(), null);

3 MyData mydata = (MyData) PAActiveObject.newWaitByNecessityWrapper(

4 MyData.class.getName(), null);

5 PAActiveObject.setForgetOnSend(ao, "foo");

6 ao.foo(largeArray);

7 ao.bar(mydata);

8 ... // do some computation using neither largeArray nor mydata variables

9 md.compute();

10 }

6.4. PERFORMANCE 65

Source Code 6.1 Example using the ForgetOnSend and the Sterility to delegate the rendez-
vous
1 public class AO {

2 @Sterile

3 public void foo(double[] largeArray) {

4 // do some computation, while keeping the sterility constraint
5 }

6

7 @Sterile

8 public void bar(MyData myData) {

9 // do some computation, while keeping the sterility constraint

10 } }

1 public class MyData implements WaitByNecessityWrapper {

2 private double[] myArray;

3
4 @Override

5 public Object getData() {

6 return myArray;

7 }

8

9 public void compute() {

10 // do some computation directly on myArray

11 } }

1 public static void main(String[] args) {
2 AO ao = (AO) PAActiveObject.newActive(AO.class.getName(), null);

3 MyData mydata = (MyData) PAActiveObject.newWaitByNecessityWrapper(

4 MyData.class.getName(), null);

5 PAActiveObject.setForgetOnSend(ao, "foo");

6 ao.foo(largeArray);

7 ao.bar(mydata);

8 ... // do some computation using neither largeArray nor mydata variables

9 md.compute();

10 }



Code example
32

6.4. PERFORMANCE 65

Source Code 6.1 Example using the ForgetOnSend and the Sterility to delegate the rendez-
vous
1 public class AO {

2 @Sterile

3 public void foo(double[] largeArray) {

4 // do some computation, while keeping the sterility constraint
5 }

6

7 @Sterile

8 public void bar(MyData myData) {

9 // do some computation, while keeping the sterility constraint

10 } }

1 public class MyData implements WaitByNecessityWrapper {

2 private double[] myArray;

3
4 @Override

5 public Object getData() {

6 return myArray;

7 }

8

9 public void compute() {

10 // do some computation directly on myArray

11 } }

1 public static void main(String[] args) {
2 AO ao = (AO) PAActiveObject.newActive(AO.class.getName(), null);

3 MyData mydata = (MyData) PAActiveObject.newWaitByNecessityWrapper(

4 MyData.class.getName(), null);

5 PAActiveObject.setForgetOnSend(ao, "foo");

6 ao.foo(largeArray);

7 ao.bar(mydata);

8 ... // do some computation using neither largeArray nor mydata variables

9 md.compute();

10 }

6.4. PERFORMANCE 65

Source Code 6.1 Example using the ForgetOnSend and the Sterility to delegate the rendez-
vous
1 public class AO {

2 @Sterile

3 public void foo(double[] largeArray) {

4 // do some computation, while keeping the sterility constraint
5 }

6

7 @Sterile

8 public void bar(MyData myData) {

9 // do some computation, while keeping the sterility constraint

10 } }

1 public class MyData implements WaitByNecessityWrapper {

2 private double[] myArray;

3
4 @Override

5 public Object getData() {

6 return myArray;

7 }

8

9 public void compute() {

10 // do some computation directly on myArray

11 } }

1 public static void main(String[] args) {
2 AO ao = (AO) PAActiveObject.newActive(AO.class.getName(), null);

3 MyData mydata = (MyData) PAActiveObject.newWaitByNecessityWrapper(

4 MyData.class.getName(), null);

5 PAActiveObject.setForgetOnSend(ao, "foo");

6 ao.foo(largeArray);

7 ao.bar(mydata);

8 ... // do some computation using neither largeArray nor mydata variables

9 md.compute();

10 }

6.4. PERFORMANCE 65

Source Code 6.1 Example using the ForgetOnSend and the Sterility to delegate the rendez-
vous
1 public class AO {

2 @Sterile

3 public void foo(double[] largeArray) {

4 // do some computation, while keeping the sterility constraint
5 }

6

7 @Sterile

8 public void bar(MyData myData) {

9 // do some computation, while keeping the sterility constraint

10 } }

1 public class MyData implements WaitByNecessityWrapper {

2 private double[] myArray;

3
4 @Override

5 public Object getData() {

6 return myArray;

7 }

8

9 public void compute() {

10 // do some computation directly on myArray

11 } }

1 public static void main(String[] args) {
2 AO ao = (AO) PAActiveObject.newActive(AO.class.getName(), null);

3 MyData mydata = (MyData) PAActiveObject.newWaitByNecessityWrapper(

4 MyData.class.getName(), null);

5 PAActiveObject.setForgetOnSend(ao, "foo");

6 ao.foo(largeArray);

7 ao.bar(mydata);

8 ... // do some computation using neither largeArray nor mydata variables

9 md.compute();

10 }



Code example
33

6.4. PERFORMANCE 65

Source Code 6.1 Example using the ForgetOnSend and the Sterility to delegate the rendez-
vous
1 public class AO {

2 @Sterile

3 public void foo(double[] largeArray) {

4 // do some computation, while keeping the sterility constraint
5 }

6

7 @Sterile

8 public void bar(MyData myData) {

9 // do some computation, while keeping the sterility constraint

10 } }

1 public class MyData implements WaitByNecessityWrapper {

2 private double[] myArray;

3
4 @Override

5 public Object getData() {

6 return myArray;

7 }

8

9 public void compute() {

10 // do some computation directly on myArray

11 } }

1 public static void main(String[] args) {
2 AO ao = (AO) PAActiveObject.newActive(AO.class.getName(), null);

3 MyData mydata = (MyData) PAActiveObject.newWaitByNecessityWrapper(

4 MyData.class.getName(), null);

5 PAActiveObject.setForgetOnSend(ao, "foo");

6 ao.foo(largeArray);

7 ao.bar(mydata);

8 ... // do some computation using neither largeArray nor mydata variables

9 md.compute();

10 }

6.4. PERFORMANCE 65

Source Code 6.1 Example using the ForgetOnSend and the Sterility to delegate the rendez-
vous
1 public class AO {

2 @Sterile

3 public void foo(double[] largeArray) {

4 // do some computation, while keeping the sterility constraint
5 }

6

7 @Sterile

8 public void bar(MyData myData) {

9 // do some computation, while keeping the sterility constraint

10 } }

1 public class MyData implements WaitByNecessityWrapper {

2 private double[] myArray;

3
4 @Override

5 public Object getData() {

6 return myArray;

7 }

8

9 public void compute() {

10 // do some computation directly on myArray

11 } }

1 public static void main(String[] args) {
2 AO ao = (AO) PAActiveObject.newActive(AO.class.getName(), null);

3 MyData mydata = (MyData) PAActiveObject.newWaitByNecessityWrapper(

4 MyData.class.getName(), null);

5 PAActiveObject.setForgetOnSend(ao, "foo");

6 ao.foo(largeArray);

7 ao.bar(mydata);

8 ... // do some computation using neither largeArray nor mydata variables

9 md.compute();

10 }

6.4. PERFORMANCE 65

Source Code 6.1 Example using the ForgetOnSend and the Sterility to delegate the rendez-
vous
1 public class AO {

2 @Sterile

3 public void foo(double[] largeArray) {

4 // do some computation, while keeping the sterility constraint
5 }

6

7 @Sterile

8 public void bar(MyData myData) {

9 // do some computation, while keeping the sterility constraint

10 } }

1 public class MyData implements WaitByNecessityWrapper {

2 private double[] myArray;

3
4 @Override

5 public Object getData() {

6 return myArray;

7 }

8

9 public void compute() {

10 // do some computation directly on myArray

11 } }

1 public static void main(String[] args) {
2 AO ao = (AO) PAActiveObject.newActive(AO.class.getName(), null);

3 MyData mydata = (MyData) PAActiveObject.newWaitByNecessityWrapper(

4 MyData.class.getName(), null);

5 PAActiveObject.setForgetOnSend(ao, "foo");

6 ao.foo(largeArray);

7 ao.bar(mydata);

8 ... // do some computation using neither largeArray nor mydata variables
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Source Code 6.1 Example using the ForgetOnSend and the Sterility to delegate the rendez-
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Figure 6.5: Message sending throughput with a delegated Rendez-vous
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5.3 Fundamental cases inducing causal ordering violations

In a distributed system, there is various reasons for a causal ordering violation. The disruption
can be caused and detected locally, or on other activities. Following is presentation of the
three fundamental cases causing such a violation.

5.3.1 Case 1: Loss of point-to-point FIFO ordering

A

B

αβ

Figure 5.3: Case 1: Loss of point-to-point FIFO ordering

The Figure 5.3 shows a simple execution experiencing a point-to-point FIFO ordering violation
between two activities, A and B.
The activity A is sending two requests in parallel, first, α then β to the same activity B.
Then, for some reason, such as the request size which would cause a long serialization time, β
is actually sent before α. On the remote activity, requests are received in the opposite order
implying that the service of the request β occurs before the service of the request α. We say
that β has overtaken α, causing a violation of the point-to-point FIFO order.

This issue can be detected immediately on the sending activity, but not on the remote activity
without the use of timestamp mechanism, added to each outgoing request.

5.3.2 Case 2: Direct loss of causal ordering

A

B

C

αβ

γ

Figure 5.4: Case 2: Direct overtaking line - Loss of causal ordering

On Figure 5.4, A makes a point-to-point communication with C, first directly with the sending
of α, then via B through the requests β and γ.
The activity A is sending concurrently the request α to the activity C, and the request β to
the activity B. For similar reasons to the previous case, the actual sending of β occurs before
the actual sending of α.
Thus, based on an hypothetical global time, the request β may be served before the request
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The Figure 5.3 shows a simple execution experiencing a point-to-point FIFO ordering violation
between two activities, A and B.
The activity A is sending two requests in parallel, first, α then β to the same activity B.
Then, for some reason, such as the request size which would cause a long serialization time, β
is actually sent before α. On the remote activity, requests are received in the opposite order
implying that the service of the request β occurs before the service of the request α. We say
that β has overtaken α, causing a violation of the point-to-point FIFO order.

This issue can be detected immediately on the sending activity, but not on the remote activity
without the use of timestamp mechanism, added to each outgoing request.

5.3.2 Case 2: Direct loss of causal ordering
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Figure 5.4: Case 2: Direct overtaking line - Loss of causal ordering

On Figure 5.4, A makes a point-to-point communication with C, first directly with the sending
of α, then via B through the requests β and γ.
The activity A is sending concurrently the request α to the activity C, and the request β to
the activity B. For similar reasons to the previous case, the actual sending of β occurs before
the actual sending of α.
Thus, based on an hypothetical global time, the request β may be served before the request
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α on their respective activities.
Then, the service of β causes the sending of a new request γ to C which could be received
and served by C before α.
We’ve called this case a direct overtaking line.

This violation cannot be detected unless the use of causal information added in the requests.

5.3.3 Case 3: Indirect loss of causal ordering

A

B

C

αβ

γ δ

Figure 5.5: Case 3 : Indirect overtaking line - Loss of causal ordering

On Figure 5.5, the activity A sends two request concurrently. First, α is sent to C, then β
is sent to B. As with the previous example, the actual sending of β occurs earlier than the
actual sending of α.

However, in this case, the service of β does not raise a new request sending, but the activity
C sends a request γ to B, whose the service emits a new request δ, to C.
In such scenario, it can happens that the receiving of δ on C occurs earlier than the receiving
of α.
The problem here, is that the sending of δ can be a consequence of the service of β which
occurs earlier, thus causing a causal ordering violation.

As for with the case 3, this violation cannot be detected unless adding some causal information
into the sent requests.

To enable the middleware to perform some optimizations, an accurate description of the
program behavior is necessary. Thus we would like to distinguish between the different types
of request, according to their behavior when served on the remote activity.

5.4 Characterizing the different types of requests

In this section, we introduce the Sterility, as a type of requests. Based on this distinction, the
middleware could adopt a particular behavior to optimize the communication by delegating,
when possible, the rendez-vous to a concurrent process of the main activity.
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Blocking the sendings

If the request αA,B is sterile but not read-only, then the problem which occurs in the execution
presented in Figure 5.5 (Indirect loss of causal ordering) can happens. Thus, to prevent the
whole execution from a causal ordering disruption, we must delay the sendings from B until
the activity is ensured that there is no risk anymore.

Thus, if B receives from A a request αA,B which is sterile but not read-only, then A is added
to the blocker_list of the activity B.

On the opposite, if the request is not sterile, then, according to the flowchart given on the
Figure 6.2, it means that all the sending queues on A was empty at the time of the sending
of αA,B (a global wait occurred). Thus, A is no longer a risk for causal ordering, and we can
remove it from the blocker_list of B.

An activity can send requests only if its blocker_list is empty.

A

B

C

α ε

ε

β

γ δ

Figure 6.4: Sterilization of an activity

The Figure 6.4 gives such example where the activity B must be blocked despite β is sterile
because it is not a read-only request as well. Thus, δ can be consequence of the service of β
and the sending of δ is delayed (symbolized with the horizontal dotted line) until B receives
a ε which ensures that the sending queues on A are empty.

For the sending of ε, we can adopt a lazy strategy with the use of a functional request. The
activity B will only be released when A sends a non-sterile request to B.
Otherwise, the middleware can decide to send a non-functional request to B, as soon as all
the sending queues on A are empty.
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Permitting the activity to send back a sterile request to its parent cannot induces a causal
ordering disruption as well. This is illustrated in Figure 5.7. As they occur concurrently on
different activities, there is no causal order between the sending of the requests δ and γ. Thus,
there is no causal order between their receiving as well.

A

B

C

αβ γ

α

δ
β

γ δ

Figure 5.7: Causal ordering is respected

Permitting the activity to send back a sterile request to its 
parent cannot induces a causal ordering disruption as well

5.4. CHARACTERIZING THE DIFFERENT TYPES OF REQUESTS 57

5.4.1 Functional

Functional requests are those which are related to the computation. They are also called
business requests. Typically, the activities of a program will operate by sending functional
requests to each others, in order to progress in the whole computation. In the mean time, the
middleware could add some non-functional requests to provide other services such as fault-
tolerance or load balancing.

5.4.2 Read-only

Read-only requests are those whose the service will have no side effect on the targeted activity.
These requests are sometimes also referred as stateless requests. During its service, such
a request only reads informations, but never modify the state of its activity. The activity
would have no souvenir of this execution. Basically, these are similar to the const methods in
languages such as C++. A get() method, which only returns the value of a variable, is an
example of read-only request.

5.4.3 Sterility

Definition 5 (Sterile Request) A sterile request is a request whose the service will not
imply the sending of a request, except to itself or its sender. These outgoing requests are
sterile as well.

A description of request sterility is given in Definition 5. Sterile requests are those whose does
not have any descendant. During its service, a sterile request does not send new requests,
except to itself or to the activity it comes from (the one which sent the request it is serving).
A get() is an example of sterile request as well.

A

B

C

β

Figure 5.6: An example of sterile request

On Figure 5.6, bold rectangle represents the service of a sterile request. Activity A sends a
sterile request β to B. When B serves β, it cannot sends a new request, except to itself or to
A (its parent).

Sterility is used to distinguish requests which may cause a causal ordering disruption of ac-
tivities communicate with asynchronous channels.

The inability to send new requests to a third activity free the middleware from the problem
described in Section 5.3.2 (Direct loss of causal ordering).
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Global wait

When a request is not sterile a causal ordering disruption is possible, as exposed on Figure 5.4.
In such a case, the rendez-vous cannot be delegated making the call blocking. Then to prevent
any causal ordering disruption, we must wait until there is no pending request to send on the
local activity anymore. Thus, we wait until all the sending queues SQK are empty.

Per-destination wait

If the request αA,B is sterile, but its rendez-vous cannot be delegated because neither the
ForgetOnSend constraint nor the Wait-by-necessity is applicable, we must perform a blocking
call. However, in such a case, we only have to wait until the sending queue SQB is empty.

Delegate the rendez-vous

If the request sending meet the two requirements, which are the candidature for delegation
and the sterility, then the request αA,B can be appended to the sending queue SQB which is
responsible of the sendings to the remote activity B.

6.2.2 Receiving of a request

The receiving of a request αA,B is detailed on Figure 6.3. This flowchart provides the decision
process which is followes when receiving a request α sent from an activity A on B.

In all the cases, the final step will be the appending of αA,B to the request queue of the activity
B. However, depending on the request type, sendings of the whole activity could be blocked
or unblocked.

αa,b

is sterile ?

yes

no
blocker_list.remove(a)

is read-only ?

yes

no
blocker_list.add(a)

RQ.add(αa,b)

Figure 6.3: Decision process for activity b when receiving a request α from a
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to use the Wait-by-necessity (wbn)), then we must wait until the sending queue of the
destination to be empty for direct sending α. It is the per-destination wait : SQB = ∅.

3. if the conditions are met, i.e. the α request is both sterile and candidate for the dele-
gation, then we can delegate the rendez-vous of this request sending by adding α to the
sending queue of its destination.

αA,B

wait until
blocker_list = ∅

is not loopback ?
(A "= B)

yes

no

is sterile ?

yes

no wait until
∀K,SQK = ∅

directSend(αA,B)

is candidate
for delegation ?

(fos or wbn)

yes

no wait until
SQB = ∅

SQB .add(αA,B)

Rendez-vous is not delegated
Call is blocking

Rendez-vous is delegated
Call is non-blocking

Figure 6.2: Decision process for activity A when sending a request α to B

Sending Receiving


