SINGLE-TRANSPOSE IMPLEMENTATION OF THE OUT-OF-ORDER 3D-FFT

Alexander J. Yee

University of Illinois Urbana-Champaign

The Problem

\square FFTs are extremely memory-intensive.
\square Completely bound by memory access.
\square Memory bandwidth is always problem.

- Single-node shared memory: not enough bandwidth
- Multi-node: even worse
- Dominant factor in performance.
\square Naïve implementations also bound by latency.
- Data-reordering can be many times slower than FFT computation itself!

The Classic Approach to 3D-FFT

1. Perform x-dimension FFT.
2. In-memory transpose.
3. All-to-all communication.
4. Perform y-dimension FFT.
5. In-memory transpose.
6. All-to-all communication.
7. Perform z-dimension FFT.
8. In-memory transpose.
9. All-to-all communication.
\square Exact order may differ.

- 3 all-to-all communication steps.
\square An extra transpose may be needed at beginning to get data into order.

What is an out-of-order FFT?

$\square \quad$ The Out-of-order FFT is mathematically the same as in-order FFT:

- Frequency domain is not in order.
\square Forward Transform:
- Start from in-order time domain.
- End with out-of-order frequency domain.
- Use Decimation-in-Frequency algorithm.
\square Inverse Transform:
- Start from out-of-order frequency domain.
- End with in-order time domain.
- Use Decimation-in-Time algorithm.
\square Order of Frequency Domain:
- Bit-reversed is the most common.
- Other orders exist.
- Some algorithms are even faster - at the cost of further scrambling up the frequency domain.

Decimation-in-Frequency FFT
(Image taken from cnx.org)

Why Out-of-Order?

\square Many applications do not need an in-order frequency domain.

- Convolution
- Do not even need to look at Frequency Domain.
\square Out-of-order FFT is faster:
\square In-order FFTs require data-reordering -> bit-reversal
- Very poor memory access.
- Re-ordering is more expensive than FFT itself!
\square In-order FFTs cannot be easily done in place.
- Requires double the memory of out-of-order FFT.
- Aggravates memory bottleneck.
\square Out-of-order FFT can be several times faster!
\square No need for final transpose for distributed FFTs over many nodes.

Convolution via Out-of-order FFT

(lmages taken from cnx.org)

Implementations of out-of-order FFT

\square Prime95/MPrime - By George Woltman

- Used in GIMPs (Great Internet Mersenne Prime Search)
- World record holder for the largest prime number found. (August 2008)
- 9 of 10 largest known prime numbers found by GIMPS.
- Uses FFT for cyclic convolution.
- Fastest known out-of-order FFT. (x86-64 assembly for Windows + Linux)
$\square \quad$ y-cruncher Multi-threaded Pi Program - By Alexander J. Yee
- Fastest program to compute Pi and other constants.
\square World Record holder for the most digits of Pi ever computed. (5 trillion digits - August 2010)
- Uses FFT and NTT for multiplying large numbers.
- Almost as fast as Prime95. (Standard C with Intel SSE Intrinsics - cross platform)
$\square \quad$ djbfft - By Daniel J. Bernstein
- One of the first implementations of out-of-order FFTs.
- Outperformed FFTW by factors >3 for convolution.
- Never widely-used, but motivated other out-of-order FFT projects.

Our Approach to 3D-FFT

\square Recognize that n-D FFT is same as 1D FFT.
\square Different Twiddle Factors.

- Same Memory Access. Same Data-Flow.
\square Implement a 1D-FFT with modified twiddle factors instead!
\square All tricks for optimizing 1D-FFT are now available.
\square Use Bailey's 4-step algorithm for 1D FFT.

1. First computation pass.
2. Matrix Transpose
3. Second computation pass.
4. Matrix Transpose data back to initial order.
\square Out-of-order FFT -> No need for final transpose!
\square Total: 1 transpose -> Only 1 all-to-all communication.

Our Approach to 3D-FFT (cont.)

\square To apply Bailey's 4-step method: Break the FFT into 2 passes.
\square Easy way (slab decomposition):

- x and y into one pass.
- z by itself in second pass.
- (y can go with x or z)
\square Hard way (split dimension):
- Split the y dimension across the two passes.
- Overcomes scalability issue with $1^{\text {st }}$ method. (see next section)
\square Both are being implemented.
\square Frequency Domain will be Bit-reversed.

Drawbacks

Slab Decomposition

$\square \quad$ Can use standard FFT libraries.

- Optimal performance will still require custom sub-routines.
\square Input data can be contiguous.
- Most common representation.
\square \# of nodes must divide evenly into either x or z dimension.
- Scalability is limited to N nodes for N^{3} 3D-FFT
- Blue Waters will have more than 10,000 nodes...

Splił Dimension

\square Cannot use standard libraries.

- Everything must be written from scratch.
\square Input data must be strided.
- Could imply extra transpose.
\square \# of nodes must divide evenly into $x^{*} y$ or $x * z$.
- Scalability is limited to $\mathrm{N}^{3 / 2}$ nodes for N^{3} 3D-FFT.
- Not a problem on Blue Waters.

Some Implementation Details

\square All code written from scratch.

- No libraries.
- Everything is customized.

Different Representations:

$$
\left\{r 0+i 0^{*} i, r 1+i 1^{*} i, r 2+i 2^{*} i, r 3+i 3^{*} i\right\}
$$

Array of Structs (classic approach)

Complex Multiplication requires unpacking SSE3 addsubpd helps a little bit. But still slow.

Struct of Arrays

No unpacking needed.
When adjacent points need to operate: SSE3 Horizontal Instructions! (30\% faster)

Benchmarks - Memory Bottleneck

Complex Out-of-order 3D-FFT (10243)
 Windows OpenMP - 16 GB needed
 2 x Intel Xeon X5482-64 GB DDR2

Benchmarks - Shared Memory

Complex Out-of-order 3D-FFT (10243)
Slab Decomposition - 32 GB needed
2 x Intel Xeon X5482-64 GB DDR2

Early Benchmarks - Distributed

Complex Out-of-order 3D-FFT (10243)

Slab Decomposition - 32 GB needed
Accelerator Cluster - UIUC

Analysis

\square All-to-all communication steps reduced:

- Reduced from 3 to 1 for out-of-order FFT.
\square In-order FFT doable by adding one transpose at end.
\square Possibly communication optimal:
\square No data is transferred more than once.
- Some data is never transferred at all.
- Hard to further reduce the \# of bytes transferred. (Is our current approach optimal?)
- Maybe possible to improve communication pattern instead?
\square Lots of room for improvement within the node.
\square FFT computation can be better optimized.
\square Difficult to imagine more nodes than x or z dimension.
- Blue Waters: > 10,000 nodes
- 10,000 may be greater than one of the dimensions.
- May not be possible (or efficient) to use slab-decomposition.

Next Steps

\square Test current code on larger systems.
\square Make sure the current implementation scales
\square Port the code to PowerPC AltiVec.
\square Currently implemented using x86-64 SSE3.
\square Implement blocking and padding.
\square Breaks cache associativity -> allows higher radix transforms.
\square Overlapped communication and computation.
\square Support for prime factors other than 2

- $3^{*} 2^{k}, 5^{*} 2^{k}$, and maybe $7^{*} 2^{k}$
\square Real-input transforms.
\square In-order FFT.

Thanks for Listening

\square Questions?

