
SINGLE-TRANSPOSE SINGLE TRANSPOSE
IMPLEMENTATION OF THE
OUT OF ORDER 3D FFTOUT-OF-ORDER 3D-FFT

Alexander J. Yee

University of Illinois Urbana-Champaign

The Problem

 FFTs are extremely memory-intensive. FFTs are extremely memory intensive.
 Completely bound by memory access.
 Memory bandwidth is always problem. Memory bandwidth is always problem.
 Single-node shared memory: not enough bandwidth
Multi-node: even worse
 Dominant factor in performance.

 Naïve implementations also bound by latency.
 Data-reordering can be many times slower than FFT

computation itself!

The Classic Approach to 3D-FFTpp

1. Perform x-dimension FFT.
I 2. In-memory transpose.

3. All-to-all communication.

4. Perform y-dimension FFT.y
5. In-memory transpose.
6. All-to-all communication.

7. Perform z-dimension FFT.
8. In-memory transpose.
9. All-to-all communication.

 Exact order may differ.
 3 all-to-all communication steps.
 An extra transpose may be needed at

b i i t t d t i t dbeginning to get data into order.

What is an out-of-order FFT?

 The Out-of-order FFT is mathematically the same as
in-order FFT:
 Frequency domain is not in order.

 Forward Transform:
 Start from in-order time domain.
 End with out-of-order frequency domain.
 Use Decimation-in-Frequency algorithm.

 Inverse Transform:
 Start from out-of-order frequency domain.
 End with in-order time domain.
 Use Decimation-in-Time algorithm.

 Order of Frequency Domain: Order of Frequency Domain:
 Bit-reversed is the most common.
 Other orders exist.

 Some algorithms are even faster – at the cost of further
scrambling up the frequency domain. Decimation-in-Frequency FFTq y

(Image taken from cnx.org)

Why Out-of-Order?y

 Many applications do not need an in-order frequency domain.
 Convolution

 Do not even need to look at Frequency Domain.

 Out-of-order FFT is faster:
 In-order FFTs require data-reordering -> bit-reversal

 Very poor memory access.
 Re-ordering is more expensive than FFT itself!

 In order FFTs cannot be easil done in place In-order FFTs cannot be easily done in place.
 Requires double the memory of out-of-order FFT.
 Aggravates memory bottleneck.

 Out-of-order FFT can be several times faster! Out of order FFT can be several times faster!
 No need for final transpose for distributed FFTs over many nodes.

Convolution via Out-of-order FFT

Time-domain
(in order)

Time-domain
(in order)

Pointwise Multiply
(order does not matter)(in order) (in order)(order does not matter)

(Images taken from cnx.org)

Implementations of out-of-order FFTp

 Prime95/MPrime – By George Woltman
 U d i GIMP (G t I t t M P i S h) Used in GIMPs (Great Internet Mersenne Prime Search)

 World record holder for the largest prime number found. (August 2008)
 9 of 10 largest known prime numbers found by GIMPS.

 Uses FFT for cyclic convolution.
 Fastest known out of order FFT (x86 64 assembly for Windows + Linux) Fastest known out-of-order FFT. (x86-64 assembly for Windows + Linux)

 y-cruncher Multi-threaded Pi Program – By Alexander J. Yee
 Fastest program to compute Pi and other constants.

W ld R d h ld f th t di it f Pi t d (5 t illi di it A t 2010) World Record holder for the most digits of Pi ever computed. (5 trillion digits – August 2010)
 Uses FFT and NTT for multiplying large numbers.
 Almost as fast as Prime95. (Standard C with Intel SSE Intrinsics – cross platform)

ff djbfft – By Daniel J. Bernstein
 One of the first implementations of out-of-order FFTs.
 Outperformed FFTW by factors > 3 for convolution.
 Never widely-used, but motivated other out-of-order FFT projects.

Our Approach to 3D-FFTpp

 Recognize that n-D FFT is same as 1D FFT.
 Different Twiddle Factors.
 Same Memory Access. Same Data-Flow.

 Implement a 1D-FFT with modified twiddle factors instead! Implement a 1D FFT with modified twiddle factors instead!
 All tricks for optimizing 1D-FFT are now available.

 Use Bailey’s 4-step algorithm for 1D FFT.
Fi t t ti 1. First computation pass.

2. Matrix Transpose
3. Second computation pass.
4. Matrix Transpose data back to initial order.

 Out-of-order FFT -> No need for final transpose!
 Total: 1 transpose -> Only 1 all-to-all communication.p y

Our Approach to 3D-FFT (cont.)pp ()

 To apply Bailey’s 4-step method: Break
the FFT into 2 passesthe FFT into 2 passes.

 Easy way (slab decomposition):
 x and y into one pass.y p
 z by itself in second pass.
 (y can go with x or z)

H d (li di i) Hard way (split dimension):
 Split the y dimension across the two

passes.
 Overcomes scalability issue with 1st

method (see ne t section)method. (see next section)

 Both are being implemented.
 Frequency Domain will be Bit-reversed.q y

Drawbacks

 Can use standard FFT libraries.

 O ti l f ill till

 Cannot use standard libraries.

 E thi t b itt f

Slab Decomposition Split Dimension

 Optimal performance will still
require custom sub-routines.

 Input data can be contiguous.

M i

 Everything must be written from
scratch.

 Input data must be strided.

C ld i l Most common representation.

 # of nodes must divide evenly into
either x or z dimension.

S l bili i li i d N d

 Could imply extra transpose.

 # of nodes must divide evenly into
x*y or x*z.

S l bili i li i d N3/2 Scalability is limited to N nodes
for N3 3D-FFT

 Blue Waters will have more than
10 000 nodes

 Scalability is limited to N3/2

nodes for N3 3D-FFT.

 Not a problem on Blue Waters.
10,000 nodes…

Some Implementation Detailsp

 All code written from scratch.
N lib i No libraries.

 Everything is customized.
 SIMD

 SSE for x86-64
 AltiVec for PowerPC
 “Struct of Arrays” layout
 Will extend to AVX and FMA in the

future. (Next-gen Intel/AMD x64.)future. (Next gen Intel/AMD x64.)
 Radix 4 FFT

 Good performance.
 Fits into 16 registers.
 Not too bad for cache associativity.

 Pre-compute Twiddle Factors
 Duplicate tables to ensure sequential

access.

Benchmarks – Memory Bottlenecky

Complex Out-of-order 3D-FFT (10243)

70

Windows OpenMP - 16 GB needed
2 x Intel Xeon X5482 - 64 GB DDR2

2 memory channels per socket
4 memory channels total

50

60
4 memory channels total

20

30

40

Se
co

nd
s

1 socket

2 sockets

Affinity
et

s

ck
et

ed

0

10

20

di
ff

er
en

t s
oc

ke

al
l i

n
sa

m
e

so
c

2
pe

r s
oc
ke
t

al
l c
or
es
 u
til
iz
e

1 thread 2 threads 4 threads 8 threads

Threads

Benchmarks - Shared Memoryy

Complex Out-of-order 3D-FFT (10243)

80

Slab Decomposition - 32 GB needed
2 x Intel Xeon X5482 - 64 GB DDR2

50

60

70

ds
)

30

40

Ti
m

e
(s

ec
on

d

All

FFT-z

All-to-all

Transpose

FFT

0

10

20 FFT-xy

Early Benchmarks - Distributedy

Complex Out-of-order 3D-FFT (10243)

25

Slab Decomposition - 32 GB needed
Accelerator Cluster - UIUC

15

20

s)

10

15

Ti
m

e
(s

ec
on

d

Strided FFT-z

All-to-all

Inner-node Transpose

Dense FFT-xy

0

5

16 / 8 32 / 8 32 / 16 64 / 16

MPI Processes / Nodes

Analysisy

 All-to-all communication steps reduced:
 Reduced from 3 to 1 for out-of-order FFT.
 In-order FFT doable by adding one transpose at end.

 Possibly communication optimal:
N d t i t f d th No data is transferred more than once.
 Some data is never transferred at all.
 Hard to further reduce the # of bytes transferred. (Is our current approach optimal?)

 Maybe possible to improve communication pattern instead?
 Lots of room for improvement within the node.

 FFT computation can be better optimized.
 Difficult to imagine more nodes than x or z dimension.

 Blue Waters: > 10,000 nodes
 10,000 may be greater than one of the dimensions.

 May not be possible (or efficient) to use slab-decomposition.

Next Stepsp

 Test current code on larger systems.
 Make sure the current implementation scales

 Port the code to PowerPC AltiVec.
 Currently implemented using x86-64 SSE3. Currently implemented using x86 64 SSE3.

 Implement blocking and padding.
 Breaks cache associativity -> allows higher radix transforms.
O l d i i d i Overlapped communication and computation.

 Support for prime factors other than 2
 3*2k, 5*2k, and maybe 7*2k

 Real-input transforms.
 In-order FFT.

Thanks for Listeningg

 Questions? Questions?

