
SINGLE-TRANSPOSE SINGLE TRANSPOSE
IMPLEMENTATION OF THE
OUT OF ORDER 3D FFTOUT-OF-ORDER 3D-FFT

Alexander J. Yee

University of Illinois Urbana-Champaign

The Problem

 FFTs are extremely memory-intensive. FFTs are extremely memory intensive.
 Completely bound by memory access.
 Memory bandwidth is always problem. Memory bandwidth is always problem.
 Single-node shared memory: not enough bandwidth
Multi-node: even worse
 Dominant factor in performance.

 Naïve implementations also bound by latency.
 Data-reordering can be many times slower than FFT

computation itself!

The Classic Approach to 3D-FFTpp

1. Perform x-dimension FFT.
I 2. In-memory transpose.

3. All-to-all communication.

4. Perform y-dimension FFT.y
5. In-memory transpose.
6. All-to-all communication.

7. Perform z-dimension FFT.
8. In-memory transpose.
9. All-to-all communication.

 Exact order may differ.
 3 all-to-all communication steps.
 An extra transpose may be needed at

b i i t t d t i t dbeginning to get data into order.

What is an out-of-order FFT?

 The Out-of-order FFT is mathematically the same as
in-order FFT:
 Frequency domain is not in order.

 Forward Transform:
 Start from in-order time domain.
 End with out-of-order frequency domain.
 Use Decimation-in-Frequency algorithm.

 Inverse Transform:
 Start from out-of-order frequency domain.
 End with in-order time domain.
 Use Decimation-in-Time algorithm.

 Order of Frequency Domain: Order of Frequency Domain:
 Bit-reversed is the most common.
 Other orders exist.

 Some algorithms are even faster – at the cost of further
scrambling up the frequency domain. Decimation-in-Frequency FFTq y

(Image taken from cnx.org)

Why Out-of-Order?y

 Many applications do not need an in-order frequency domain.
 Convolution

 Do not even need to look at Frequency Domain.

 Out-of-order FFT is faster:
 In-order FFTs require data-reordering -> bit-reversal

 Very poor memory access.
 Re-ordering is more expensive than FFT itself!

 In order FFTs cannot be easil done in place In-order FFTs cannot be easily done in place.
 Requires double the memory of out-of-order FFT.
 Aggravates memory bottleneck.

 Out-of-order FFT can be several times faster! Out of order FFT can be several times faster!
 No need for final transpose for distributed FFTs over many nodes.

Convolution via Out-of-order FFT

Time-domain
(in order)

Time-domain
(in order)

Pointwise Multiply
(order does not matter)(in order) (in order)(order does not matter)

(Images taken from cnx.org)

Implementations of out-of-order FFTp

 Prime95/MPrime – By George Woltman
 U d i GIMP (G t I t t M P i S h) Used in GIMPs (Great Internet Mersenne Prime Search)

 World record holder for the largest prime number found. (August 2008)
 9 of 10 largest known prime numbers found by GIMPS.

 Uses FFT for cyclic convolution.
 Fastest known out of order FFT (x86 64 assembly for Windows + Linux) Fastest known out-of-order FFT. (x86-64 assembly for Windows + Linux)

 y-cruncher Multi-threaded Pi Program – By Alexander J. Yee
 Fastest program to compute Pi and other constants.

W ld R d h ld f th t di it f Pi t d (5 t illi di it A t 2010) World Record holder for the most digits of Pi ever computed. (5 trillion digits – August 2010)
 Uses FFT and NTT for multiplying large numbers.
 Almost as fast as Prime95. (Standard C with Intel SSE Intrinsics – cross platform)

ff djbfft – By Daniel J. Bernstein
 One of the first implementations of out-of-order FFTs.
 Outperformed FFTW by factors > 3 for convolution.
 Never widely-used, but motivated other out-of-order FFT projects.

Our Approach to 3D-FFTpp

 Recognize that n-D FFT is same as 1D FFT.
 Different Twiddle Factors.
 Same Memory Access. Same Data-Flow.

 Implement a 1D-FFT with modified twiddle factors instead! Implement a 1D FFT with modified twiddle factors instead!
 All tricks for optimizing 1D-FFT are now available.

 Use Bailey’s 4-step algorithm for 1D FFT.
Fi t t ti 1. First computation pass.

2. Matrix Transpose
3. Second computation pass.
4. Matrix Transpose data back to initial order.

 Out-of-order FFT -> No need for final transpose!
 Total: 1 transpose -> Only 1 all-to-all communication.p y

Our Approach to 3D-FFT (cont.)pp ()

 To apply Bailey’s 4-step method: Break
the FFT into 2 passesthe FFT into 2 passes.

 Easy way (slab decomposition):
 x and y into one pass.y p
 z by itself in second pass.
 (y can go with x or z)

H d (li di i) Hard way (split dimension):
 Split the y dimension across the two

passes.
 Overcomes scalability issue with 1st

method (see ne t section)method. (see next section)

 Both are being implemented.
 Frequency Domain will be Bit-reversed.q y

Drawbacks

 Can use standard FFT libraries.

 O ti l f ill till

 Cannot use standard libraries.

 E thi t b itt f

Slab Decomposition Split Dimension

 Optimal performance will still
require custom sub-routines.

 Input data can be contiguous.

M i

 Everything must be written from
scratch.

 Input data must be strided.

C ld i l  Most common representation.

 # of nodes must divide evenly into
either x or z dimension.

S l bili i li i d N d

 Could imply extra transpose.

 # of nodes must divide evenly into
x*y or x*z.

S l bili i li i d N3/2 Scalability is limited to N nodes
for N3 3D-FFT

 Blue Waters will have more than
10 000 nodes

 Scalability is limited to N3/2

nodes for N3 3D-FFT.

 Not a problem on Blue Waters.
10,000 nodes…

Some Implementation Detailsp

 All code written from scratch.
N lib i No libraries.

 Everything is customized.
 SIMD

 SSE for x86-64
 AltiVec for PowerPC
 “Struct of Arrays” layout
 Will extend to AVX and FMA in the

future. (Next-gen Intel/AMD x64.)future. (Next gen Intel/AMD x64.)
 Radix 4 FFT

 Good performance.
 Fits into 16 registers.
 Not too bad for cache associativity.

 Pre-compute Twiddle Factors
 Duplicate tables to ensure sequential

access.

Benchmarks – Memory Bottlenecky

Complex Out-of-order 3D-FFT (10243)

70

Windows OpenMP - 16 GB needed
2 x Intel Xeon X5482 - 64 GB DDR2

2 memory channels per socket
4 memory channels total

50

60
4 memory channels total

20

30

40

Se
co

nd
s

1 socket

2 sockets

Affinity
et

s

ck
et

ed

0

10

20

di
ff

er
en

t s
oc

ke

al
l i

n
sa

m
e

so
c

2
pe

r s
oc
ke
t

al
l c
or
es
 u
til
iz
e

1 thread 2 threads 4 threads 8 threads

Threads

Benchmarks - Shared Memoryy

Complex Out-of-order 3D-FFT (10243)

80

Slab Decomposition - 32 GB needed
2 x Intel Xeon X5482 - 64 GB DDR2

50

60

70

ds
)

30

40

Ti
m

e
(s

ec
on

d

All

FFT-z

All-to-all

Transpose

FFT

0

10

20 FFT-xy

Early Benchmarks - Distributedy

Complex Out-of-order 3D-FFT (10243)

25

Slab Decomposition - 32 GB needed
Accelerator Cluster - UIUC

15

20

s)

10

15

Ti
m

e
(s

ec
on

d

Strided FFT-z

All-to-all

Inner-node Transpose

Dense FFT-xy

0

5

16 / 8 32 / 8 32 / 16 64 / 16

MPI Processes / Nodes

Analysisy

 All-to-all communication steps reduced:
 Reduced from 3 to 1 for out-of-order FFT.
 In-order FFT doable by adding one transpose at end.

 Possibly communication optimal:
N d t i t f d th  No data is transferred more than once.
 Some data is never transferred at all.
 Hard to further reduce the # of bytes transferred. (Is our current approach optimal?)

 Maybe possible to improve communication pattern instead?
 Lots of room for improvement within the node.

 FFT computation can be better optimized.
 Difficult to imagine more nodes than x or z dimension.

 Blue Waters: > 10,000 nodes
 10,000 may be greater than one of the dimensions.

 May not be possible (or efficient) to use slab-decomposition.

Next Stepsp

 Test current code on larger systems.
 Make sure the current implementation scales

 Port the code to PowerPC AltiVec.
 Currently implemented using x86-64 SSE3. Currently implemented using x86 64 SSE3.

 Implement blocking and padding.
 Breaks cache associativity -> allows higher radix transforms.
O l d i i d i Overlapped communication and computation.

 Support for prime factors other than 2
 3*2k, 5*2k, and maybe 7*2k

 Real-input transforms.
 In-order FFT.

Thanks for Listeningg

 Questions? Questions?

