SINGLE-TRANSPOSE
IMPLEMENTATION OF THE
OUT-OF-ORDER 3D-FFT

Alexander J. Yee

University of lllinois Urbana-Champaign

The Problem

FFTs are extremely memory-intensive.
Completely bound by memory access.

Memory bandwidth is always problem.
Single-node shared memory: not enough bandwidth
Multi-node: even worse

Dominant factor in performance.

Naive implementations also bound by latency.

Data-reordering can be many times slower than FFT
computation itself!

The Classic Approach to 3D-FFT
L

1. Perform x-dimension FFT. In-order Time Domain

2. In-memory transpose.

3. All-to-all communication. Y
x-FFT

4. Perform y-dimension FFT.

3 In-memory transpose. M

6. All-to-all communication. ' !
y-FFT

7. Perform z-dimension FFT.

8. In-memory transpose. W

9. All-to-all communication. ! !
z-FFT

1 Exact order may differ.

7 3 all-to-all communication steps. m

o An extra transpose may be needed at ! In-order Froquency !
beginning to get data into order. Domain

What is an out-of-order FFT?

The Out-of-order FFT is mathematically the same as

in-order FFT: i
Frequency domain is not in order. e
x2)
Forward Transform: i
Start from in-order time domain. B
End with out-of-order frequency domain. %
Use Decimation-in-Frequency algorithm. =)
X7}
Inverse Transform: a8}
Start from out-of-order frequency domain. % i
End with in-order time domain. f10)
Use Decimation-in-Time algorithm. (b = ><
12}
Order of Frequency Domain: I3 ><
Bit-reversed is the most common. w09 - S 4 N Xm
Other orders exist. 13 / g -J / \ w7 /_ o >< X(15)

Some algorithms are even faster — at the cost of further
scrambling up the frequency domain.

Decimation-in-Frequency FFT

(Image taken from cnx.org)

Why Out-of-Order?

Many applications do not need an in-order frequency domain.
Convolution

Do not even need to look at Frequency Domain.
Out-of-order FFT is faster:

In-order FFTs require data-reordering -> bit-reversal
Very poor memory access.
Re-ordering is more expensive than FFT itself!

In-order FFTs cannot be easily done in place.
Requires double the memory of out-of-order FFT.
Aggravates memory bottleneck.

Out-of-order FFT can be several times faster!

No need for final transpose for distributed FFTs over many nodes.

Convolution via Out-of-order FFT

\ N\ ~

N\ // \\// XX
N
M

ri)

M)

J XX
=19 ./ S -f / \ r'/__ 'f>< X(15)

x(t2j

xr il

X76)

xi14)

xfi3i

ardy

x(11)

15

X X(0)

w D e NN N A

X4 \\// N
NANIAN Y \\\ 7/
T~

X (4)

W, X(5)

w! _‘ § X(6)

we i il XM

><
. ><_,
><: : N) W
=<,
-

X(@

\/ s
><>< wl\\// //XXXX\\; X(l0
N e NXXZ LN
AN \

B///A\\
RY//\\.
// \\ X(14)
LN)

Time-domain Pointwise Multiply Time-domain
(in order) (order does not matter) (in order)

(Images taken from cnx.org)

Implementations of out-of-order FFT

Prime95/MPrime — By George Woltman

Used in GIMPs (Great Internet Mersenne Prime Search)
World record holder for the largest prime number found. (August 2008)
@ of 10 largest known prime numbers found by GIMPS.

Uses FFT for cyclic convolution.
Fastest known out-of-order FFT. (x86-64 assembly for Windows + Linux)

y-cruncher Multi-threaded Pi Program — By Alexander J. Yee
Fastest program to compute Pi and other constants.
World Record holder for the most digits of Pi ever computed. (5 ftrillion digits — August 2010)
Uses FFT and NTT for multiplying large numbers.

Almost as fast as Prime@5. (Standard C with Intel SSE Intrinsics — cross platform)

djbfft — By Daniel J. Bernstein
One of the first implementations of out-of-order FFTs.
Outperformed FFTW by factors > 3 for convolution.

Never widely-used, but motivated other out-of-order FFT projects.

Our Approach to 3D-FFT

Recognize that n-D FFT is same as 1D FFT.
Different Twiddle Factors.
Same Memory Access. Same Data-Flow.
Implement a 1D-FFT with modified twiddle factors instead!
All tricks for optimizing 1D-FFT are now available.
Use Bailey’s 4-step algorithm for 1D FFT.
First computation pass.
Matrix Transpose

Second computation pass.
Matrix Transpose data back to initial order.

Out-of-order FFT -> No need for final transpose!
Total: 1 transpose -> Only 1 all-to-all communication.

Our Approach to 3D-FFT (cont.)

1 To apply Bailey’s 4-step method: Break
the FFT into 2 passes.

1 Easy way (slab decomposition):
x and y into one pass.
z by itself in second pass.

(y can go with x or z)

1 Hard way (split dimension):

Split the y dimension across the two
passes.

Overcomes scalability issue with 1
method. (see next section)

1 Both are being implemented.

11 Frequency Domain will be Bit-reversed.

In-order Time Domain

In-order Time Domain

Y

x-FFT

y-FFT (1% half)

wMW

y-FFT (2™ half)

Z2-FFT

Y

Bit-reversed Frequency
Domain

Bit-reversed Frequency
Domain

Drawbacks
I

Slab Decomposition Split Dimension

1 Can use standard FFT libraries. o1 Cannot use standard libraries.
o Optimal performance will still o1 Everything must be written from
require custom sub-routines. scratch.
71 Input data can be contiguous. 7 Input data must be strided.
1 Most common representation. o Could imply extra transpose.
1 # of nodes must divide evenly into 1 # of nodes must divide evenly into
either x or z dimension. x*y or x*z.
o Scalability is limited to N nodes o1 Scalability is limited to N3/2
for N3 3D-FFT nodes for N3 3D-FFT.
o1 Blue Waters will have more than 1 Not a problem on Blue Waters.

10,000 nodes...

Some Implementation Details

All code written from scratch. Different Representations:
No libraries.
Everything is customized. {r0 +1i0%, r1 + 1%, r2 +i2%, r3 + i3"i}
SIMD
SSE for x86-64 Array of Structs (classic approach)
AltiVec for PowerPC
“Struct of Arrays” layout o |0 || it |22 i3
Will extend to AVX and FMA in the
future. (Next-gen Intel /AMD x64.) Complex Multiplication requires unpacking.
Radix 4 FFT SSE3 addsubpd helps a little bit. But still slow.

Good performance.

Fits into 16 regis'rers. Struct Df Arrays
Not too bad for cache associativity.

Pre-compute Twiddle Factors 0 | Jio | it |2 | 3|2 | i3

Duplicate tables to ensure sequential

access. Mo unpacking needed.

When adjacent points need to operate:
SSE3 Horizontal Instructions! (30% faster)

Benchmarks — Memory Bottleneck
-

Complex Out-of-order 3D-FFT (10243)
Windows OpenMP - 16 GB needed
2 x Intel Xeon X5482 - 64 GB DDR2

70

2 memory channels per socket
4 memory channels total

60

50 -

40 -

Affinity

Seconds

30 - "1 socket

H 2 sockets

20 -

10 A

1 thread 2 threads 4 threads 8 threads
Threads

Benchmarks - Shared Memory
I

Complex Out-of-order 3D-FFT (10243)
Slab Decomposition - 32 GB needed
2 x Intel Xeon X5482 - 64 GB DDR2

80

70

60

50

mAll

40
©FFT-z

30 = All-to-all
E Transpose

20 | | FFT-X)’

10

0 _

oQ‘\ g‘g &* g‘g é?"\ &‘3 oQ"\ 8‘8
() () () QQ
o

Time (seconds)

Early Benchmarks - Distributed
I

Complex Out-of-order 3D-FFT (10243)
Slab Decomposition - 32 GB needed
Accelerator Cluster - UIUC

25
20 +
@15 -
5
g = Strided FFT-z
J
o = All-to-all
£
i 10 - ¥ Inner-node Transpose
= Dense FFT-xy
5 .
0 -

16 /8 32/8 32 /16 64 /16
MPI Processes / Nodes

Analysis

All-to-all communication steps reduced:

Reduced from 3 to 1 for out-of-order FFT.

In-order FFT doable by adding one transpose at end.
Possibly communication optimal:

No data is transferred more than once.
Some data is never transferred at all.
Hard to further reduce the # of bytes transferred. (Is our current approach optimal?)

Maybe possible to improve communication pattern instead?
Lots of room for improvement within the node.

FFT computation can be better optimized.
Difficult to imagine more nodes than x or z dimension.

Blue Waters: > 10,000 nodes

10,000 may be greater than one of the dimensions.
May not be possible (or efficient) to use slab-decomposition.

Next Steps

Test current code on larger systems.
Make sure the current implementation scales

Port the code to PowerPC AltiVec.
Currently implemented using x86-64 SSE3.

Implement blocking and padding.

Breaks cache associativity -> allows higher radix transforms.
Overlapped communication and computation.
Support for prime factors other than 2
3*2k, 5*2k and maybe 7*2k
Real-input transforms.
In-order FFT.

Thanks for Listening
I

1 Questions?

