
Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,
for the United States Department of Energyʼs National Nuclear Security Administration

 under contract DE-AC04-94AL85000.

The UHPC X-Caliber Project
Architecture, Design Space, & Codesign

Arun Rodrigues
Sandia National Labs

DARPA UHPC Project
•Goal: Prototype Rack

–1 PetaFlop in 2018
–57 KW (inc. cooling & IO)

•Sandia led team with Micron,
LexisNexis, 8 academic
partners

•Major innovation required in
packaging, network, memory,
apps, and architecture

•Major Themes
–Parallax programming Model
–Stacked memory
–Memory Processor
–Optical Network
–Codesign

•Codesign
–Application driven
–Iterative
–Common simulation platform

(SST) as “clearing house” for
ideas

Exascale Design Study
•2018 Exascale Machine

–1 Exaop/sec
–500 petabyte/sec memory

bandwidth
–500 petabyte/sec interconnect

bandwidth
–Assume advanced packaging

may, or may not be available

•Consider power
–1 pJ * 1 Exa = 1 MW
–1 MW/year = $1 M
–$100-200M / year power bill

infeasible
•But, that’s OK

–Reliability, programmability,
component cost, scalability,
get you first

Energy Events/sec Conventional Adv. Pack Improved
Processor 62.5 pJ/op 1E+18 ops 62.5 MW 40% 37.5 MW
Memory 31.25 pJ/bit 4E+18 bits 125 MW 45% 68.8 MW

Interconnect 6 pJ/bit 4E+18 bits 24 MW 44% 13.4 MW
Total 211.5 MW 119.7 MW

X-Caliber Architecture

NS0 Node

Architecture

N
IC
/R
ou
te
r

N
IC
/R
ou
te
r

EMU
M

EMU
M

EMU
M

EMU
M

EMU
M

EMU
M

EMU
M

EMU
M

EMU
M

EMU
M

EMU
M

EMU
M

EMU
M

EMU
M

EMU
M

EMU
M

P

P

aaa! " #

•Movement = power
•Reduce amount & cost of
data movement

•Stacked memory
•Memory Processor
•Optical Network
•Heavyweight multithreaded
vector processor

•Sprint Modes
•Node building block

Parallax Execution Model
•Highly threaded

–Threads as addressable objects to
enable introspection

–Low cost thread spawn
•Light weight Synchronization

–Hardware-assisted sync
–Enables dataflow computation

•Message driven computation
–Remote thread instantiation with parcels

•Highly Dynamic
–Thread migration, object migration
–Global namespace to coordinate object

movement

MEM

PROCESS A

PROCESS B

PROCESS C

12

3

4

5

6

Process spans multiple nodes1
2
3
4
5
6

Multiple user-level threads per node
Processes can share same nodes
Light weight synchronization through Local Control Objects
Message driven computation creates remote threads with parcels
Threads can spawn local threads

7 Distributed shared Memory

7

8 Global address space enables direct remote memory access

8

Sprint Modes
•Processor

–Normally 1.5GHz, can sprint to 2.5 GHz
•All cores sprint for limited period of time
•Some cores sprint indefinitely

–Useful for Amdahl regions of code
•Network

–512 GB/s normal injection BW, can sprint to 1024 GB/s
–Can activate additional links to increase BW
–Useful for smoothing bursty communication

•Memory
–Ability to boost clock of processing components
–Perform more processing in memory

of the application run, and “ BSP Factor” refers to portions of the network which can be powered
down temporarily during the run to conserve power. Table 16 summarizes subsystem use for each
application.

P E M U Memory B W Network B W BSP factor Storage & M isc
Stream 100% 100% 100% 100% 100% 100%
Graph 0% 100% 100% 110% 100% 100%
Decision 66% 76% 92% 103% 80% 72%
C T H 100% 25% 100% 100% 50% 25%
L A M MPS 100% 25% 50% 100% 25% 0%
L inpack 100% 0% 33% 100% 50% 0%

Table 16: Subsystem Usage by A pplication

The power consumed by each subsystem is calculated based on its usage using Equation 1.
This accounts for subsystems which cannot be fully powered off. For example, we assume that
even when the P processors are not used, they will still consume 10% of their normal power for OS
duties. Similarly, network and memory bandwidth has a P m i n of 20% of its full power, to allow us
to power down the portions of a link, but maintain the clock signals, allowing a fast power up. The
P m i n for Storage and Power are 25% and 50% respectively.

Psubsy ste m = P m i n + (P m a x − P m i n) U sage (1)

The normal power consumption for each subcomponent is 12.8 k W for the processor (P), 19.2
k W for memory (M), 7.68 k W for network (N), 3 k W for storage and 14.32 k W for cooling. The
total power consumption for a rack-level system for each application is summarized in Table 17.
The power consumption also given for the rack without cooling and storage and without network,
for reference when computing board and module-level systems.

E.3 Performance

Rack
Power
(k W)

w/o cooling
& storage

w/o network

Stream 57.0 39.7 32.0
Graph 44.4 28.9 20.5
Decision 48.6 33.1 26.4
C T H 47.2 33.0 28.4
L A M MPS 41.0 28.2 25.2
L inpack 40.1 27.5 22.9

Table 17: Subsystem Usage by A pplication

A pplication performance is estimated com-
bining application characteristics with known
system latencies. A pplications were traced
to gather their dynamic operation mix (i.e.
branches, loads, floating point, and integer
operations) and cache simulation and perfor-
mance counters were used to determine mem-
ory access characteristics. For extremely ran-
dom access applications (such as the G UPS
models used to emulate the Streaming applica-
tion and the graph application), the probability
of a remote memory accesses is assumed to be

n−1
n where n is the number of nodes in a system. It is also assumed that the graph implementation

on the X -caliber architecture will utilize thread migration on the E M Us, and that once a thread

166

The Embedded Memory Processor

The EMP
•3D Stack: DRAM & Logic
•Memory Controllers (read/
write➔RAS/CAS)

•On Chip network
•Off-chip communication
•Multiple Processing elements

–‘DAUs’: Close to memory controller
–‘VAUs’ : Closer

•Design space:
–# of VAUs/DAUs/MCs, bandwidths,

topologies, etc...

Inside the DAUs

•Simple pipeline of some sort
–Wide access(?)
–Multithreaded

•Memory/NoC access

•Interesting bits...
–Scratchpad: vs cache. Shared w/

registers? globally addressable?
–Instruction encoding:

Compressed? Contains dataflow
state?

–Global address space
–Integration w/ network (parcel

handling)
–Integration w/ memory

Wide-word Struct ALU
...

Thread 0 registers

Thread N-1 registers

…

Scratchpad

Memory Interface
Row Buffers

Dataflow
Control
State

Wide
Instruction

Buffer

Parcel
Handler

Thread
Manager

Memory Vault

Fault
Detection

and
Handling

Power
Management

Access
Control

AGAS
Translation

PRECISE
Decoder

Key Design Space Explorations
A Few

Advanced Packaging Technology
•Enables

–Huge amounts of bandwidth at low power and latency
–Real integration of processing and memory without

prohibitive fabrication problems
• Moving processing into memory makes percolation,
possible

• Opens new realms for message-based computation
•Limits

–Temperature more constrained
–May increase cost

•Need cost, power, energy, and thermal models
•Tradeoffs:

–Depth of stack, #of stacks
–Density of TSVs (logic vs. communication)
–Composition of stack (optics? memory? logic?)

2015 Capability Machine Cost Study
Adv. PackagingAdv. Packaging Conventional SystemConventional System

24 Core 96 Core

Peak PF 124 124 303.5 286.3

Memory (PB) 20.6 20.2 20.1 20.1

GB/Core 1.7 1.6 2.2 2.7
Link BW
(B/flop) 4.04.0 0.20 0.03

Power (MW) 14.3 13.7 96.4 27.8

Cost ($M) $161.4 $155.3 $567.3 $258.8

Memory ($M) $101.90 $101.11 $146.59 $146.59

Processor ($M) $18.58 $24.47 $55.88 $34.13

Network ($M) $20.69 $13.41 $256.30 $46.99
Power, RAS, racks
($M) $20.20 $16.35 $108.58 $31.13

Requires
lower peak

Optics allows
massive BW

Stacking
decreases

power
Lower
Cost

“Dumber”
Memory is

cheaper

Power density
allows more
nodes/board

More
wasted
flops

!!! !!

Amortize
Packaging 1000s

of pins

Global Address/Name Space
•What hardware support for lookups

–Without hardware = too slow?
–With hardware support = too much power?

•Which objects are in the global name space?
–Do we need to limit the number?

•How do we partition lookups between the NIC and EMP?
•How do we partition between SW&HW lookup

Entries Avg Obj
Size

pJ/
Access

Area
mm^2

Energy
(W)

Energy
Budget

Area
cost

8k 512KB 96 1.9 96 0.17% 0.95%

64k 64KB 229 10.5 229 0.40% 5.25%

512k 8KB 615 88.4 615 1.08% 44.20%

peta-scale rack, 57kW budget, 8B entries, 4GB stack, 22nm
1 tera-access/sec, 200 mm^2 logic part

Power/Energy Feedback / Hooks
•Feedback
•Thermal Migration

–Move computation around to keep
chip within thermal bounds

–Possibly decrease overall energy
consumption by reducing leakage
current at higher temperatures

•Thermal Scheduling
–Only do certain work when

temperature/power usage is low
–“Computational Siesta”
–Fits in with Codelet/static dataflow

model

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

8core 4core 2core 1core

N
o

rm
a

li
z
e
d

 P
o

w
e

r

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

8core 4core 2core 1core

N
o

rm
a

li
z
e
d

 P
o

w
e

r

Figure 3. Normalized power of the manycore systems

 We use two metrics to evaluate the performance and
efficiency tradeoffs in clustering. The energy-delay-area
product (EDAP) is of particular interest because the metric
includes both an operational cost element (energy) and a
capital cost element (area) [5]. Figure 4 shows EDAP and
EDP of the 4 system configurations normalized by the
values of the 4-core per cluster configuration. Figure 4A
shows that clustering using 4 cores gives the best EDAP.
This is consistent with McPAT’s conclusion that the 4-core
per cluster configuration has the best EDAP on all
benchmark suites on average [5]. Figure 4B shows the 4-
core per cluster configuration also has the best EDP.

0

0.5

1

1.5

2

2.5

8core 4core 2core 1core

R
e
la

ti
v

e
 E

D
A

P

0

0.5

1

1.5

2

2.5

8core 4core 2core 1core

R
e

la
ti

v
e

 E
D

P

A B

0

0.5

1

1.5

2

2.5

8core 4core 2core 1core

R
e
la

ti
v

e
 E

D
A

P

0

0.5

1

1.5

2

2.5

8core 4core 2core 1core

R
e
la

ti
v

e
 E

D
A

P

0

0.5

1

1.5

2

2.5

8core 4core 2core 1core

R
e

la
ti

v
e

 E
D

P

0

0.5

1

1.5

2

2.5

8core 4core 2core 1core

R
e

la
ti

v
e

 E
D

P

A B

Figure 4. Normalized EDP and EDAP

 It has been shown that on average, increasing cluster size
improves the system EDP and the effects of clustering on
the metric values depend heavily on applications [5]. In our
study, the 8-core per cluster configuration has worse EDP
than the 4-core per cluster design. This is because of the
characteristics of the communication pattern component we
use. In this study, we assume the cores in the same cluster
have a shared L2 cache. Figure 5 shows that the
communication pattern results in similar numbers of local
communications (intra-cluster communications) for the 4-
and the 8-core per cluster configurations. Therefore,
clustering 8 cores together does not take more benefit from
cache sharing comparing to the 4-core per cluster design.
On the other hand, the 2-core per cluster design has about
50% less local communications and thus consumes more
power in routing messages.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

8core 4core 2core 1core

N
o

rm
a

li
z
e
d

 n
u

m
b

e
r

o
f

lo
c
a

l
c

o
m

m
u

n
ic

a
ti

o
n

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

8core 4core 2core 1core

N
o

rm
a

li
z
e
d

 n
u

m
b

e
r

o
f

lo
c
a

l
c

o
m

m
u

n
ic

a
ti

o
n

Figure 5. Normalized number of intra-cluster communication

4.4 Effect of Temperature Variation and

Leakage Feedback on Performance
 In the previous section we simulated the network on chip
with a single uniform temperature and no leakage feedback.
We now consider temperature variation and leakage
feedback in the model and examine how these affect the
metric values for the 4 system configurations.
 Figure 6 shows the total power consumption of the 4
configurations normalized to the lowest–power NoC
configuration. The blue bars indicate estimated NoC power
with no leakage feedback or temperature variation while the
yellow bars show the estimated power taking both into
consideration. The figure shows that when both leakage
feedback and temperature variation are considered, the
power consumption for each configuration increases (by
about 10%) compared to the no variation case. Besides, the
relative power ranking among the 4 configurations remains
the same as the one with no variation.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

8core 4core 2core 1core

N
o

rm
a
li

z
e

d
 P

o
w

e
r

No variation

Temperature
variation

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

8core 4core 2core 1core

N
o

rm
a
li

z
e

d
 P

o
w

e
r

No variation

Temperature
variation

Figure 6. Normalized power with consideration of temperature

variation

 Next, we examine the impact of considering both leakage
feedback and temperature variation on EDAP and EDP.
Figure 7 shows the normalized EDAP and EDP of the four
configurations with (red line) and without variance (blue

Codelet

Arg 1

Arg 2

T < 100º

Design Space: In-memory Operations
•Functionality (PIM & AMO) & supported AMOs
•Ratios of compute in memory vs. cpu
•How do the CPU & PIM share the memory channel how (priority,
master/slave, etc...)

•OS support, ISA support, runtime & compiler support
–Protection

•What state is shared (TLB, memory, process status word, LSQ
etc...)? what read/writeable?

•How does PIM to PIM communication work (thorough CPU? direct
to other PIM? through NIC?)

•Do PIMs talk virtual or physical addresses?
•CPU/PIM protocol: RPC like?
•Impact on CPU pipeline (do acks effect commit of instructions, or
is at a software level)?

•Separate AMO & PIM unit, or just PIM, or just AMO, or neither
•Separate units for gather/scather?

Co-Design Philosophy

Co Design Process

•NS0 Starting point
•Diversify into application-specific versions
•Merge into Conceptual System 0
•Iterate and refine towards prototype

NS0 NS3 (Decision)
NS2 (Stream)
NS1 (Graph)

NS4 (Shock)
NS5 (Materials)

CS0 CS1 CS2 CS3 XS0 XS1

CoDR End P1

PDR End P2

Paper Designs Optimized for
Each Challenge Problem

Iterative Codesign of a Unified System
(Integrating all NS Designs)

Prototype Proposal
(for Phase 3-4)

Co-Design Process

•Key Metrics
–Energy/Power, Performance, Cost, Area

•Iterative
–Need early results to guide design
–Lack complete understanding of execution model, architecture,

technology, applications...
–Initial experiments will use conventional components &

application implementations, before novel models/
implementations are available

–Carefully avoid over-constraining problem, while still guiding
•Early design space exploration

–Analytical models
–Technology models
–Execution-based simulation with SST

SST Simulation Project Overview

Technical Approach

Goals
•Become the standard architectural
simulation framework for HPC

•Be able to evaluate future systems
on DOE workloads

•Use supercomputers to design
supercomputers

•Parallel
•Parallel Discrete Event core with
conservative optimization over MPI

•Holistic
•Integrated Tech. Models for power
•McPAT, Sim-Panalyzer

•Multiscale
•Detailed and simple models for
processor, network, and memory

•Open
•Open Core, non viral, modular

Consortium
•“Best of Breed” simulation suite
•Combine Lab, academic, & industry

Status
•Current Release (2.1) at
code.google.com/p/sst-simulator/
•Includes parallel simulation core,
configuration, power models, basic
network and processor models, and
interface to detailed memory model

Component Library
•Parallel Core v2

–Parallel DES layered on MPI
–Partitioning & Load Balancing
–Configuration & Checkpointing
–Power modeling

•Technology Models
–McPAT, Sim-Panalyzer, IntSim, Orion and

custom power/energy models
–HotSpot Thermal model
–Working on reliability models

•Components
–Processor: Macro Applications, Macro

Network, NMSU, genericProc, state-machine,
Zesto, GeM5, GPGPU

–Network: Red Storm, simpleRouter, GeM5
–Memory: DRAMSim II, Adv. Memory, Flash,

SSD, DiskSim
–Other: Allocation Node, IO Node, QSim

Parallel DES

MPI
Checkpointing

Statistics

Power Area
Cost

Configuration

Services

Vendor
Component

Open
Component

Vendor
Component

Open
Component

Simulator Core

SST Simulator Core

1

2 3 4

5 6 7

8 9 10

11 12

XML

SDL

!

Point

1

2 3 4

5 6 7

8 9 10

11 12

SST Workflow

SST in UHPC
•Clearing house for new ideas
•Testbed

–Early results quickly
–Progressively add detail

•Bring in simulation models from others
•Provide holistic feedback (power, area, etc...)

Summary & Collaborations
•Aggressive architecture focusing on the data movement
problem

•Vast design space
•Iterative application-driven codesign process

•Applications
–Are there areas we are not looking at?

•Simulation
–New technologies
–Existing ‘baseline’ models

•Programming Models & Runtimes
–How do we adapt?
–What feedback is needed from the HW to the runtime?

Bonus slides

Mantevo MiniApp Goals
•Goal: “Best approximation of X in O(1000) lines or fewer

•Predict performance of real applications in new situations.
•Aid computer systems design decisions.
•Foster communication between applications, libraries and
computer systems developers.

•Guide application and library developers in algorithm and
software design choices for new systems.

•Provide open source software to promote informed
algorithm, application and architecture decisions in the
HPC community.

•Co-Design!

ParalleX vs. Today’s Dominant Model
Element Parallex Mechanism Stylized Communicating

Sequential Processes

Concurrency Lightweight Threads/
Codelets

MPI Ranks/Processes

Coordination Lightweight Control Objects
(LCOs)
(fine-grained)

Bulk Synchronous (or maybe by
teams and messages)
(coarse-grained)

Movement of Work: Parcels
of Data: PGAS and Bulk

of Work: None
of Data: Bulk

Naming Global Name Space
Global Address Space

Coarse, rank/node names

Introspection System Knowledge Graph
(enables dynamic/adaptive)

Not specified by the model, in
practice out-of-bands RAS
network

Xcal

These components provide the module with more compute and data movement capabilities than
can be simultaneously powered in many types of deployments. The node will actively manage
power to reduce power of underutilized components in order to provide more power to heavily
utilized components. For a given deployment, each component is given a nomimal operating
power/thermal envelope, which can be exceeded (referred to as sprinting) when other components
are not fully utilizing their budget. The nomimal power budgets for a rack deployment are shown
in Table 5.

Table 5: Nominal module power budgets in a rack.
Number Component Module

Component per Module Power Power
Processor 2 55 W 110 W
Memory 16 9.2 W 147.2 W

N IC/Router 2 30 W 60 W
N V R A M 10 1.5 W 15 W

Total module power budget: 332.2 W
Total rack compute power budget: 42.5 k W

The following sections will de-
scribe each of these components.

2.4.1.1 Memory The principal
component of the memory sys-
tem, called H B D R A M for H y-
brid Buffered D R A M, is based
on M icron’s new three-dimensional
construction and assembly capa-
bilities. The key component of
the new capability, Through-Silicon
Vias (TSV), enables multiple die to
be stacked, greatly increasing the

number of connections, and thus available bandwidth, that can be made, while simultaneously
reducing the distances signals travel so that power and latency are reduced. Because D R A Ms use
semiconductor processing that limits signaling capabilities, a logic die is included in the 3D com-
ponent package to make available the IO bandwidth that is enabled by the large number of TSV s.
The result is a memory component that has 16 memory die (two stacks of 8 die) and a logic die in
a single package. F igure 5 shows the basic ideas, but present the memory stack as a single 4 high
stack, for simplicity.

September 16, 2009 3:44 pm Micron Highly Confidential and Proprietary

Dave Resnick 3 Aurora Strawman Start.fm

Architecture
! " ! # $%& ! ’ !() *+!,-! . !- , " / 0+!1 . (2 . / +!(3 " 4 . , " , " / !+, / 54!637!83) 79!%& ! ’ ! : ,+! . " : !3 " +!03 / , (! : ,+!-4 . (2+ : !

43 / +45+7!) - , " / !4573) / 5"- ,0, (3 " ! ; , . !6<= > 9!4+(5 " 303 / ?@! A ,45 , " ! . !() *+B! C + C 37?!,-!37 / . " ,D+ : ! ; +74, (. 00? E
1374,3 " -!38!+ . (5! C + C 37?! : ,+! . 7+!(3 C *, " + : ! F ,45!45+!(377+- 13 " : , " / !1374,3 " -!38!45+!345+7! C + C 37?! : ,+!
, " !45+!-4 . (2@!G . (5! / 73) 1 , " / !38! C + C 37?!1 . 74,4,3 " -!,-!(3 C *, " + : ! F ,45! . !(377+- 13 " : , " / !-+(4,3 " !38!45+!
03 / , (! : ,+B!837 C , " / ! F 5 . 4!,-!7+8+77+ : !43! . -! . ! ; .) 04@

G . (5!1 . 74,4,3 " !, " ! . ! C + C 37?! : ,+!,-!, " : +1+ " : + " 4!38!45+!345+7!1 . 74,4,3 " -!3 " !45 . 4! : ,+@!< 5+! / 73) 1!38!1 . 74,"
4,3 " -!45 . 4! C . 2+!) 1!45+! C + C 37?!837! . ! ; .) 04!- 5 . 7+!<= > !(3 " " +(4,3 " -!43!45+!03 / , (!* . -+!6H3$9@!G . (5! ; .) 04!
5 . -! . ! C + C 37?!(3 " 47300+7!, " !45+!H3$!45 . 4! : 3+-! . 00! C + C 37?!7+8+7+ " (+!31+7 . 4,3 " -! F ,45 , " !45 . 4! ; .) 04@!G . (5!
(3 " 47300+7!5 . -! . " ! . - -3(, . 4+ : ! F 372I7+8+7+ " (+! F 372!J) +) +!45 . 4!,-!) -+ : !43!*) 88+7!7+8+7+ " (+-!837!45 . 4!
; .) 04K-! C + C 37?! . " : !,-!) -+ : !*?!45+!(3 " 47300+7!43!314, C ,D+!* . " : F , : 45!*?!+L+() 4, " / !7+8+7+ " (+-!3) 4!38!
37 : +7! . -! " ++ : + : @!6< 5+7+!,-! . ! C 3 : +!7+ / ,-4+7!-+44, " / !45 . 4!837(+-! C 37+!37 : +7, " / @9

! 00!45+! ; .) 04-! . 7+!(3 " " +(4+ : !4573) / 5! . !(73- -* . 7!- F ,4(5!43!45+!03 / , (!45 . 4!(3 " 4730-!45+!+L4+7 " . 0!-+7, . 0!MI N !
0, " 2-@

G . (5!38!45+!OP! ; .) 04-!, " ! . !() *+! . 7+!8) " (4,3 " . 00?!, " : +1+ " : + " 4!38!45+!345+7! ; .) 04-@!=++!8, /) 7+!O@!G . (5!
; .) 04! C + C 37?!(3 " 47300+7!5 . -!,4-!3 F " ! F 372!J) +) +! . " : ! : +4+7 C , " +-!,4-!, " 4+7 " . 0!4, C , " / @!G . (5! ; .) 04! C + C "
37?!(3 " 47300+7! : +4+7 C , " +-!45+! C + C 37?!7+87+- 5!4, C , " / !837!45 . 4! ; .) 04B!) " 0+- -! : 3, " / !-3!,-!3 ; +77, : : + " !*?!
C + C 37?!(3 " 8, /) 7 . 4,3 " !1 . 7 . C +4+7-@! N " 0?! . !1374,3 " !38!45+! C + C 37?!* . " 2-!, " ! . ! ; .) 04! . 7+!7+87+- 5+ : ! . 4!

45+!- . C +!4, C +B!-3!45 . 4! . ! C . Q37,4?!38! . ! ; .) 04K-!* . " 2-! . 7+! . ; . ,0 . *0+!837! " 37 C . 0!31+7 . 4,3 " ! F 5+ " !7+87+- 5!
31+7 . 4,3 " -! . 7+!) " : +74 . 2+ " B! F ,45!7+J) +-4-!837!*) -?!* . " 2-!*+, " / !*) 88+7+ : B! . -!,-! : 3 " +!837!345+7! C + C 37?!
7+8+7+ " (+-@!

< 5+7+! . 7+!OP!*, : ,7+(4,3 " . 0!% R ! : . 4 . !0, " +-I<= > -!, " !+ . (5! ; .) 04B!- 5 . 7+ : !*?! . 00!38! . ! ; .) 04K-!1 . 74,4,3 " -@!< 5+7+!
. 7+!S! . : : ,4,3 " . 0!% R !0, " +-!) -+ : !837!G T T ! : . 4 . @

< 5+! ; +74, (. 0!, " 4+7(3 " " +(4,3 " -!837! : . 4 . B! . : : 7+- -B! . " : !(3 C C . " : -! . 7+! C) (5!- 5374+7!45 . " !45+?! F 3) 0 : !*+!
,8!45+?! F +7+! . 00!3 " !3 " +! : ,+@!< 5+!- 5374+7!, " 4+7(3 " " +(4,3 " -!7+-) 04!, " !, C 173 ; + : ! C + C 37?!4, C , " / ! . " : !, " !

Bank Bank

Partition

Partition

Partition

Partition

Logic

DRAM

DRAM

DRAM

DRAM

Logic Base

! " #$%

Figure 2: T) *+! N 7 / . " ,D . 4,3 " ! . " : ! U . C +-!

For description only.
Not a layout

Includes a
vault controller

F igure 5: H B D R A M cube organization.

Using the vertical dimension,
the multi-part memory component
is organized such that the data flow
is up and down the component stack
rather than laterally on a single die
as is current practice. Independent
partitions within the component are
called vaults. Data layout has also
been changed such that a single
memory request is serviced by a
single bank in a single vault, rather
than being spread across multiple
parts, as is done in current mem-
ory system implementation. This
change alone is a good portion of the power reduction in H B D R A M. The result is a memory

21

design costs have increased such that a modern general purpose processing chip can cost hundreds
of millions or a couple of billion dollars from concept to fabrication and packaging. This limits
new processor designs to mass markets such as PCs, embedded, mobile, or games.

NVM
EMU EMU

NVM
EMU EMU

NVM
EMU EMU

NV
EMU

M
EMU

NV
EMU

F igure 6: N V R A M con-
figuration.

A n alternative design strategy is that of maximum simplicity
which provides sufficient functionality to deliver scalable performance.
When combined with codesign of all system hardware and software
layers, an approach of minimizing processor complexity can lead
to much higher energy efficiency. X -caliber proposes to use two
classes of processors based on this approach: embedded memory units
(E M Us) and compute intensive processors (C IPs). The processors are
tightly coupled to each other and to the processing capability found
in the N IC, which helps orchestrate the system data movement. Each
of these processors is built from relatively simple pieces which are
specialized to perform efficiently in their given domains resulting in
smaller, faster and more energy efficient system components. The high
level details of these processors are described in the following sections.

2.4.1.2.1 Embedded Memory Units The advent of 3D pack-
aging and adaptive runtimes allow us to introduce intelligent logic
structures in close proximity to the memory devices. These Embedded
Memory Units will allow many data marshaling and transfer opera-
tions to be handled directly in the memory, avoiding power-consuming
transfers to the processor and reducing its load. The E M Us will al-
low the memory system to handle common operations such as scat-
ter/gathers, data structure traversal, bulk memory operations (copying,
zeroing), atomic operations and pattern matching. E M Us will support
execution of user-defined actions close to the memory system and as-
sist in verification and access control for security, greatly decreasing the load on the processor.
E M Us will have to support fault detection and correction behavior, possibly by performing R A ID-
like operations on main memory. E M Us will support message-driven computation by acquiring,
processing, buffering, and verifying parcels. The data-driven computation of the ParalleX exe-
cution model is key to enabling this memory acceleration and effectively partitioning execution
between the processor core and E M Us. Because the E M Us are implemented in a logic process
on the logic layer of the D R A M stack, they are fully capable of managing their power through
techniques such as voltage scaling, clock gating, and by participating in the power-aware runtime.

Two major categories of E M Us have been identified, and are shown in F igure 7. Researching
the exact functionality of the E M Us will be performed in Stage 1, but a general description if these
units is given below.

• Vault A tomic Unit (VA U): A ttached directly to the memory vault, these units are capable of
handling relatively simple operations on highly local data. These can also provide very low
overhead atomics and synchronization primitives. The close proximity to the data minimizes
round trip latency and energy consumption.

23

Operated by the Los Alamos National Security, LLC for the DOE/NNSA

Sandia’s Mantevo Project

• Mantevo is a collection of small and agile mini-applications
to predict performance and explore new system
architectures
– Potential rewrites allow exploring programming models
– http://software.sandia.gov/mantevo
– Code collection is Open Source

• Currently in the Mantevo suite:
– HPCCG (conjugate gradient)
– MiniMD (MD force calcs, e.g. LAMMPS)
– MiniFE (unstructured implicit finite element)
– MiniXyce (in progress) (circuit modeling)
– LANL is exploring developing a mini-IMC code for radiation

transport

http://software.sandia.gov/mantevo
http://software.sandia.gov/mantevo

