
Extreme Scale
Heterogeneous Computing

Wen-mei Hwu
University of Illinois, Urbana-Champaign

Extreme Scale Heterogeneous
Computing Gaining Momentum

•  Chinese (Tienhe and Nebula) and Japenese
(Tsubame 2.0) machines rose to top of Top500

•  Two of the top 3 of Green500 are Heterogeneous
Computing Clusters

SC 2010 2

GPU computing is catching on.

•  280 submissions to GPU Computing Gems
– 110 articles included in two volumes

SC 2010

Financial
Analysis

Scientific
Simulation

Engineering
Simulation

Data
Intensive
Analytics

Medical
Imaging

Digital
Audio

Processing

Computer
Vision

Digital
Video

Processing

Biomedical
Informatics

Electronic
Design

Automation

Statistical
Modeling

Ray
Tracing

Rendering

Interactive
Physics

Numerical
Methods

3

Samples of UIUC Heterogeneous
Computing Application Efforts

•  NAMD/VMD (Phillips/Stone)
•  MILC (Gotlieb/Shi)
•  QMC (Kim/Ceperley)
•  De Novo Gene Assembly (Ma/Chen/Hwu)
•  IMPATIENT (Sutton/Liang/Hwu)
•  …

SC 2010 4

A Common GPU Usage Pattern

SC 2010

•  A desirable approach considered impractical
– Due to excessive computational requirement
– But demonstrated to achieve domain benefit
– Convolution filtering (e.g. bilateral Gaussian filters),

De Novo gene assembly, etc.

•  Use GPUs to accelerate the most time-consuming
aspects of the approach
– Kernels in CUDA or OpenCL
– Refactor host code to better support kernels

•  Rethink the domain problem 5

AVAILABLE KERNELS

SC 2010 6

Library Kernels
•  CUBLAS

– Basic Linear Algebra
– CUDA SDK

•  CULA, Magma
– Linear Algebra Solvers
– www.culatools.com
– http:/icl.cs.utk.edu/magma

•  CUSP
– Sparse data structures and

algorithms
–  SpMV, CG, …

•  Graph algorithms
– BFS kernels exist
– Need graph partitioning

kernels
•  Unstructured grid algorithms

– 3D surface mesh generation/
refinement

– Need 3D volume mesh
generation (e.g. CGAL)/
refinement

•  Add your favorite library here
SC 2010 7

Four Challenges
•  Computations with no known scalable parallel

algorithms
– Shortest path, Delaunay triangulation, …

•  Data distributions that cause catastrophical load
imbalance in parallel algorithms
– Free-form graphs, MRI spiral scan

•  Computations that do not have data reuse
– Matrix vector multiplication, …

•  Algorithm optimizations that are hard and labor
intensive
– Locality and regularization transformations

8

Kernel development for GPUs is
heavy lifting.

SC 2010

Each kernel is typically a 3-month job but very
few developers benefit from advanced

compiler technology today.

9

Little code reuse due to kernel sensitivity to
memory access patterns and work distribution.

KERNEL DEVELOPMENT

SC 2010 10

Many-core Kernel Development

SC 2010 11

•  Many-core programming is about performance
and scalability.
– Scalability is also key to power efficiency.
– Performance and scalability for many-cores

requires largely the same techniques.
• To regularize work and data for massively parallel

execution.
• To localize data for conserving memory bandwidth

•  There is a gap between what the programmers
need and what the tools provide today.

Key to Massive Parallelism -
Regularity and Locality

SC 2010 12

Eight Optimization Patterns for
Algorithms (so far)

SC 2010 13

http://courses.engr.illinois.edu/ece598/hk/
GPU Computing Gems, Vol. 1 and 2

1: Scatter to Gather Transformation

Thread 1 Thread 2 …
in

out

Thread 1 Thread 2 …
in

out
SC 2010 14

2. Privatization

SC 2010
15

Copy 0 Copy 1

Final
Copy

Copy N

Parallel Vector
Reduction

…

Block 0 Block 1 Block N …

Final
Copy

… Block 0 Block 1 Block N

Atomic Updates

3. Granularity Coarsening and
Register Data Reuse

•  Parallel execution often requires redundant
and coordination work
– Merging multiple threads into one allows re-

use of result, avoiding redundant work

SC 2010 Essential

Redundant

4-way
parallel

2-way
parallel

Time

16

4: Data Access Tiling

SC 2010

Thread 1 Thread 2 …

in DRAM

Thread 1 Thread 2 …

DRAM in

On-chip Memory

17

5. Data Layout Transformation
y=0 y=1

y=0 y=1 y=0 y=1 y=0 y=1

[z][y31:4][x31:4][e][y3:0][x3:0], 6.6 X faster than AoS SC 2010 18

SC 2010

6: Input Data Binning

19

SC 2010

7. Compaction

0 2 1 6 3 7 4 5

On-chip Memory

0 1 2 2 3 4 7 9

On-Chip Memory

3 4

0 1 3 2 4 7 9 0 0 1

CPU

0 1 0 0 2 1 3 4 9 7

20

Variable sized bins,
sort and scan

8. Regularization
w-queue

b-queue

g-queue

b-queue

On-chip Memory

…

SC 2010 21

Tools go with techniques.

SC 2010 22

•  Tools should facilitate key techniques
– Programmers should write code “for others to

understand instead of for computers to execute”
- Dijkstra

•  Techniques vary in their potential for automation
– Scatter-to-gather, granularity coarsening, data

access tiling, and memory layout quite amenable
• Need clear performance guidance

– Input binning, bin sorting, and hierarchical queues
are much harder
• Need to provide APIs understood by compilers/tools
• Developer feedback critical to success

Orion: Reducing Performance Cost
of Heterogeneous Parallelism

23

Thread Granularity
Coarsening

Compute and Data
Vectorization

Performance
Estimation

Data Layout
Transformation

Tiling and Blocking Scatter to Gather

OpenCL Backend MuticoreCUDA
C Backend

AMD/ATI
GPUs

AMD CPUs
IBM CPUs?

OpenCL Software
Stack Host C Compiler

Intel CPUs NVIDIA
GPUs Xlinx FPGA

FPGACUDA
Backend

Auto Pilot
Synthesis

CUDA
Backend

NVCC

CUDA Code OpenCL
Code Pyon Code DSL Code

Orion Performance Portability Framework

Baghsorkhi and Hwu,
EPHAM 2009, PPoPP 2010

FFT

prefix scan

Invitation for Collaboration
• Development and Validation of Scalable

Kernel Libraries for Heterogeneous
Computing
– Linear algebra, graph algorithms, PDE solvers,

Fourier methods, …
– New methods/algorithms/implementations
– Performance portability tools
– Validation methodology and tools
– Usable libraries

26 SC 2010

Crossing the Valley of Death

SC 2010

We can make it through the valley
by collaborating with each other.

27

THANK YOU!

SC 2010 28

