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Extreme Scale Heterogeneous 
Computing Gaining Momentum   

•  Chinese (Tienhe and Nebula) and Japenese 
( Tsubame 2.0) machines rose to top of Top500 

•  Two of the top 3 of Green500 are Heterogeneous 
Computing Clusters 

SC 2010 2 



GPU computing is catching on. 

•  280 submissions to GPU Computing Gems 
– 110 articles included in two volumes 
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Samples of UIUC Heterogeneous 
Computing Application Efforts 

•  NAMD/VMD (Phillips/Stone) 
•  MILC (Gotlieb/Shi) 
•  QMC (Kim/Ceperley) 
•  De Novo Gene Assembly (Ma/Chen/Hwu) 
•  IMPATIENT (Sutton/Liang/Hwu) 
•  … 
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A Common GPU Usage Pattern 
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•  A desirable approach considered impractical 
– Due to excessive computational requirement 
– But demonstrated to achieve domain benefit 
– Convolution filtering (e.g. bilateral Gaussian filters), 

De Novo gene assembly, etc. 

•  Use GPUs to accelerate the most time-consuming 
aspects of the approach 
– Kernels in CUDA or OpenCL 
– Refactor host code to better support kernels 

•  Rethink the domain problem 5 



AVAILABLE KERNELS 
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Library Kernels 
•  CUBLAS 

– Basic Linear Algebra 
– CUDA SDK 

•   CULA, Magma 
– Linear Algebra Solvers 
– www.culatools.com 
– http:/icl.cs.utk.edu/magma 

•  CUSP 
– Sparse data structures and 

algorithms 
–   SpMV, CG, … 

•  Graph algorithms 
– BFS kernels exist 
– Need graph partitioning 

kernels 
•  Unstructured grid algorithms 

– 3D surface mesh generation/
refinement 

– Need 3D volume mesh 
generation (e.g. CGAL)/ 
refinement 

•  Add your favorite library here 
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Four Challenges 
•  Computations with no known scalable parallel 

algorithms 
– Shortest path, Delaunay triangulation, … 

•  Data distributions that cause catastrophical load 
imbalance in parallel algorithms 
– Free-form graphs, MRI spiral scan 

•  Computations that do not have data reuse 
– Matrix vector multiplication, … 

•  Algorithm optimizations that are hard and labor 
intensive 
– Locality and regularization transformations 
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Kernel development for GPUs is 
heavy lifting. 

SC 2010 

Each kernel is typically a 3-month job but very 
few developers benefit from advanced 

compiler technology today. 
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Little code reuse due to kernel sensitivity to 
memory access patterns and  work distribution. 



KERNEL DEVELOPMENT 
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Many-core Kernel Development 
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•  Many-core programming is about performance 
and scalability. 
– Scalability is also key to power efficiency. 
– Performance and scalability for many-cores 

requires largely the same techniques. 
• To regularize work and data for massively parallel 

execution. 
• To localize data for conserving memory bandwidth  

•  There is a gap between what the programmers 
need and what the tools provide today. 



Key to Massive Parallelism -  
Regularity and Locality 
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Eight Optimization Patterns for 
Algorithms (so far) 
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http://courses.engr.illinois.edu/ece598/hk/ 
GPU Computing Gems, Vol. 1 and 2 



1: Scatter to Gather Transformation 
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2. Privatization 
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3. Granularity Coarsening and 
Register Data Reuse 

•  Parallel execution often requires redundant 
and coordination work 
– Merging multiple threads into one allows re-

use of result, avoiding redundant work 
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4: Data Access Tiling 
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5. Data Layout Transformation 
y=0 y=1 

y=0 y=1 y=0 y=1 y=0 y=1 

[z][y31:4][x31:4][e][y3:0][x3:0], 6.6 X faster than AoS SC 2010 18 
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6: Input Data Binning 
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7. Compaction 
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Variable sized bins,  
sort and scan 



8. Regularization 
w-queue 

b-queue 

g-queue 

b-queue 

On-chip Memory 

…
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Tools go with techniques. 
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•  Tools should facilitate key techniques 
– Programmers should write code “for others to 

understand instead of for computers to execute”    
- Dijkstra 

•  Techniques vary in their potential for automation 
– Scatter-to-gather, granularity coarsening, data 

access tiling, and memory layout quite amenable 
• Need clear performance guidance 

– Input binning, bin sorting, and hierarchical queues 
are much harder 
• Need to provide APIs understood by compilers/tools 
• Developer feedback critical to success 



Orion: Reducing Performance Cost 
of  Heterogeneous Parallelism 
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Baghsorkhi and Hwu, 
EPHAM 2009, PPoPP 2010 
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Invitation for Collaboration 
• Development and Validation of Scalable 

Kernel Libraries for Heterogeneous 
Computing 
– Linear algebra, graph algorithms, PDE solvers, 

Fourier methods, … 
– New methods/algorithms/implementations 
– Performance portability tools 
– Validation methodology and tools 
– Usable libraries 
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Crossing the Valley of Death 
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We can make it through the valley  
by collaborating with each other. 
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THANK YOU! 
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