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Extreme Scale Heterogeneous
Computing Gaining Momentum

* Chinese (Tienhe and Nebula) and Japenese
( Tsubame 2.0) machines rose to top of Top500

* Two of the top 3 of Green500 are Heterogeneous
Computing Clusters
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For Tyler Takeshita, helping to construct a supercomputer was like meeting a familiar
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GPU computing is catching on.
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» 280 submissions to GPU Computing Gems
— 110 articles included in two volumes
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Samples of UIUC Heterogeneous
Computing Application Efforts

NAMD/VMD (Phillips/Stone)

MILC (Gotlieb/Shi)

QMC (Kim/Ceperley)

De Novo Gene Assembly (Ma/Chen/Hwu)
IMPATIENT (Sutton/Liang/Hwu)
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A Common GPU Usage Pattern

* A desirable approach considered impractical
— Due to excessive computational requirement
— But demonstrated to achieve domain benefit

— Convolution filtering (e.g. bilateral Gaussian filters),
De Novo gene assembly, etc.

* Use GPUs to accelerate the most time-consuming
aspects of the approach

— Kernels in CUDA or OpenCL
— Refactor host code to better support kernels

* Rethink the domain problem



AVAILABLE KERNELS
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Library Kernels

« CUBLAS

— Basic Linear Algebra
— CUDA SDK

« CULA, Magma
— Linear Algebra Solvers

— www.culatools.com
— http:/icl.cs.utk.edu/magma

« CUSP

— Sparse data structures and
algorithms

— SpMV, CG, ...
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 Graph algorithms
— BFS kernels exist
— Need graph partitioning
kernels
 Unstructured grid algorithms

— 3D surface mesh generation/
refinement

— Need 3D volume mesh
generation (e.g. CGAL)/
refinement

* Add your favorite library here



Four Challenges

Computations with no known scalable parallel
algorithms
— Shortest path, Delaunay triangulation, ...

Data distributions that cause catastrophical load
imbalance in parallel algorithms

— Free-form graphs, MRI spiral scan

Computations that do not have data reuse

— Matrix vector multiplication, ...

Algorithm optimizations that are hard and labor
iIntensive

— Locality and regularization transformations



Kernel development for GPUs is
heavy lifting.

Each kernel is typically a 3-month job but very
few developers benefit from advanced
oompller technology today

Little code reuse due to kernel sensitivity to
» memory access patterns and work distribution.
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KERNEL DEVELOPMENT
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Many-core Kernel Development

« Many-core programming is about performance
and scalabillity.
— Scalabillity is also key to power efficiency.

— Performance and scalability for many-cores
requires largely the same techniques.

 To regularize work and data for massively parallel
execution.

* To localize data for conserving memory bandwidth

* There is a gap between what the programmers
need and what the tools provide today.
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Key to Massive Parallelism -
Regularity and Locality
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Eight Optimization Patterns for
Algorithms (so far)

Technique Contention | Bandwidth | Locality | Efficiency | Load Imbalance | CPU Leveraging
Tiling X X

Privatization X X

Regularization X X X
Compaction X

Binning X X X X

Data Layout Transformation X X

Thread Coarsening X X X X

Scatter to Gather Conversion X

http://courses.engr.illinois.edu/ece598/hk/

GPU Computing Gems, Vol. 1 and 2
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1: Scatter to Gather Transformation

out
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2. Privatization

Block O Block 1 Block N

Block 0 Block 1 Block N
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Parallel Vector
Reduction

Q Atomic Updates
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3. Granularity Coarsening and
Register Data Reuse

» Parallel execution often requires redundant
and coordination work

— Merging multiple threads into one allows re-
use of result, avoiding redundant work
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4: Data Access Tiling
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5. Data Layout Transformation

< y=0 e y=1

Array of Structure: [z][y][x][e]

>

Structure of Array: [e][z][Y][X]

4X faster than AoS on GTX280
———— — — ey
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Execution time (seconds)
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6: Input Data Binning
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7. Compaction

Variable sized bins, \Q Q’

sort and scan 0O 1 2 3 4 7 9 0 0 1

On-chip Memory _




8. Regularization
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Tools go with techniques.

* Tools should facilitate key techniques

— Programmers should write code “for others to
understand instead of for computers to execute”
- Dijkstra

« Techniques vary in their potential for automation

— Scatter-to-gather, granularity coarsening, data
access tiling, and memory layout quite amenable

* Need clear performance guidance

— Input binning, bin sorting, and hierarchical queues
are much harder

* Need to provide APIs understood by compilers/tools
» Developer feedback critical to success
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Orion: Reducing Performance Cost
of Heterogeneous Parallelism

CUDA Code

OpenCL
Code

Pyon Code

DSL Code
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Host C Compiler
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ADAPT: Example of Advanced Compiler Technique
in kernel performance prediction

HW constraints enable efficient abstract interpretation
to emulate expert-level performance prediction

Loop Region

h=2%1tx+1
/*Load data into shared nenory*/ i

.f.o.r(stride =2, stride <= 256; stride << 1) -
\ Y

f
if( ((nt) % stride = 0)

shared[ n] +=shared[n - stride >> 1]; — 3 W=
_syncthreads(); %7 ¢

g syncthreads ()
' \ Y

W=7? W =1
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8 times L Baghsorkhi and Hwu,
shared[ 2tx +1 J+ = .. EPHAM 2009, PPoPP 2010
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Invitation for Collaboration

* Development and Validation of Scalable
Kernel Libraries for Heterogeneous
Computing
— Linear algebra, graph algorithms, PDE solvers,

Fourier methods, ...
— New methods/algorithms/implementations
— Performance portability tools
— Validation methodology and tools
— Usable libraries

26 SC 2010



Crossmg the Valley of Death

: The Valley
;‘E . of Death
gL
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bzy collaborating with each other.
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THANK YOU!
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