
High Performance Components
with Charm++ and OpenAtom

(Work in Progress)

Christian Perez
Graal/Avalon INRIA EPI
LIP, ENS Lyon, France

Joint Laboratory for Petascale Computing
University of Illinois at Urbana-Champaign

23 November 2010

November 23rd 2010 High Performance Components with Charm++ and OpenAtom 2

Context of this work

  Initial discussion with Laxmikant Kale
  2nd workshop, Urbana, 2-4 December 2009

  Actual start
  Visit of Julien Bigot & Christian Perez at UIUC, 19-23 July 2010

  Fruitful discussion with
  Phil Miller (Charm++)
  Eric Bohm and Ramprasad Venkataraman (OpenAtom)

November 23rd 2010 High Performance Components with Charm++ and OpenAtom 3

Outline of the talk

  Motivation
  OpenAtom

  Overview of HLCM core concepts
  HLCM/Charm++

  Some examples with HLCM
  Shared Memory
  MxN
  Advanced Chooser

  Current status & ongoing work

November 23rd 2010 High Performance Components with Charm++ and OpenAtom 4

Overview of OpenAtom (UIUC)

  Ab-initio quantum chemistry code based on Charm++

November 23rd 2010 High Performance Components with Charm++ and OpenAtom 5

PairCalulator & Orthonormalization Modules

  PairCalculators
  4-dimensional (4D) array
  Used in the force regularization

and orthonormalization phases

  Ortho
  2D array

  Interactions between
PairCalculators & Ortho
  Specialized Reduction & Multicast based operations

November 23rd 2010 High Performance Components with Charm++ and OpenAtom 6

Issues with OpenAtom (PC/Ortho)

  No well defined separation of codes
  How to replace the Ortho code with an improved version?

  Mixing of concerns
  PairCalculator & Ortho codes mixed with

optimized communication code

  No abstraction for adapting the application
(code and performance portability)
  How to select an Ortho implementation in function of

hardware and input data?
  How to select an optimized communication implementation

between PC & Ortho?

November 23rd 2010 High Performance Components with Charm++ and OpenAtom 7

Objectives

  Enable code-reuse
  E.g. the Ortho module of OpenAtom
  Let expert develop a piece of code

  Enable adaptation when re-using code
  E.g. should Ortho be based on double? What about quad?
  Let re-use code with parameterization options

  Enable any kind of composition operators
  E.g the 4D-2D interactions between PairCalculator & Ortho
  Do not impose any communication models

  Enable efficient implementation of composition operators
  E.g. by having a 4D-2D op. instead of reduction+multicast op.

November 23rd 2010 High Performance Components with Charm++ and OpenAtom 8

How to Achieve Those Objectives?

  Enable code-reuse
  Software Component

  Primitive component for re-using implementation code
  Composite component for re-using assemblies of components

  Enable adaptation when re-using code
  Genericity

  Enable any kind of composition operators
  Connectors

  Enable efficient implementation of composition operators
  Open connection

Overview of Core Concepts of
High Level Component Model (HLCM)

Component, Connector, Hierarchy,
Genericity, & Template Meta-Programming

November 23rd 2010 High Performance Components with Charm++ and OpenAtom 10

HLCM: High Level Component Model

  Defined in the PhD of Julien Bigot
  Major concepts

  Component model
  Primitive (abstract) and composite

  Connector based
  Primitive and composite

  Generic model
  Support meta-programming (template à la C++)

  Currently static

November 23rd 2010 High Performance Components with Charm++ and OpenAtom 11

Connectors

  Without connectors
  Direct connection between ports

through model provided interactions

  With connectors
  Originally defined in ADLs
  Connectors reify connections

  A name
  A set of roles

  Any number of roles
  Can be 1st class entities

  Provided by the underlying model
  User implemented

Connector

Component Component

Component Component

roles

ports

connector UseProvide
< role user, role provider >;

November 23rd 2010 High Performance Components with Charm++ and OpenAtom 12

HLCM: Component

  Black box that may expose some open connections

connector UseProvide
< role user, role provider >;

User role fulfilled

User role left “open”

aComponent

aComponent

Provider role left “open”

Provides InterfaceA cnxA
Uses InterfaceB cnxB

Provider role fulfilled

cnxA

cnxB

November 23rd 2010 High Performance Components with Charm++ and OpenAtom 13

hello client

HLCM: Composite Component

component Example { }

composite ExampleImpl
implements Example
{
 HelloComponent hello;
 ClientComponent client;

 connection cnx;
 cnx |= hello.talk;
 cnx |= client.say;
}

client hello

Results in

talk say

cnx

ExampleImpl

ExampleImpl

November 23rd 2010 High Performance Components with Charm++ and OpenAtom 14

HLCM: Primitive Components

  Abstract Component Model
  Primitive components not defined directly by HLCM
  Primitives defined by a specialization

  HLCM/CCM, HLCM/Charm++

  HLCM/Charm++
  Primitive component: Charm++ Chare + some design constraints
  Primitive connector: UseProvide interactions

  A chare may provide an interface or make use of a (remote) interface
component HelloComponent {
 UseProvide { provider [CharmProvide!(Hello)]; } talk;
}

Fulfilled role

User: role left “open”
HelloComponent

(Open) Connection

November 23rd 2010 High Performance Components with Charm++ and OpenAtom 15

HLCM/Charm++ (Nov. 2010)

component HelloComponent {
 UseProvide { provider [CharmProvide!(Hello)]; } talk;
}

HLCM

chare HelloC implements HelloComponent {
 exports talk type=Hello as talk.provider;
}

Charm++
Primitive

Declaration

chare HelloC : ComponentInterface, Hello {
 entry HelloC();
 // Hello Interface Implementation (functional code)
 entry void hello() { CkPrintf(“Hello!\n”); }
 // Provides Hello talk (could be generated)
 entry [sync] void provider_set_talk(CProxy_ComponentInterface& pssi,
 int n, char name[n], long key)
 { pssi._set(thishandle, n, port, key); }
}

Charm++

November 23rd 2010 High Performance Components with Charm++ and OpenAtom 16

Engineering issues with HLCM/Charm++

  Need multiple inheritance
  Implemented by the Charm++ team during summer 2010
  Validated with components providing 3 interfaces

  Engineering issue with application linkage
  Charm needs to know all chares to generate stubs

  Prevent dynamic loading of components
  Current solution: statically list all used components in Makefile

November 23rd 2010 High Performance Components with Charm++ and OpenAtom 17

HLCM: User Implemented Connector

generator LoggingUP<UI,PI>
Implements UseProvide<provider = { CharmProvide!<PI> },
 user = { CharmUse!<UI> }>
when (UI super PI)
{
 Logger<UI> proxy;
 proxy.clientSide.user += this.user;
 proxy.serverSide.provider += this.provider;
}

Logged Use / Provide Logger<UI> U/P U/P

user
interface = UI

provider
interface = PI

When PI subtype of UI and
user.host = provider.host

November 23rd 2010 High Performance Components with Charm++ and OpenAtom 18

HLCM: Benefit of Open Connections

merge expose A 
merge

 B

reuse

A2

A1 B1

B2

Results in What implementation to
use for this connection?

November 23rd 2010 High Performance Components with Charm++ and OpenAtom 19

HLCM Connection Implementation:
a Planning Choice

Multiple hosts
distribution

Single host
distribution

  Component and connection implementation choice made
by choosers
  Not defined in HLCM
  Specialization depend

November 23rd 2010 High Performance Components with Charm++ and OpenAtom 20

Model based HLCM Definition

  Connector

  Connection

  Assembly

November 23rd 2010 High Performance Components with Charm++ and OpenAtom 21

HLCMi: An Implementation of HLCM

  Model-transformation based
  Eclipse Modeling Tools
  Mainly Emfatic files

  Used to generate ecore & Java files

  HLCM core (PIM + transformation)
  127 UML classes
  470 Emfatic lines
  25 000 generated Java lines
  + 2000 Java lines for transformation engine

  OMG QVT was not well implemented

  Already implemented connectors
  Use/Provide, Shared Data, Collective Communications,

“MxN” RMI, Irregular Mesh

November 23rd 2010 High Performance Components with Charm++ and OpenAtom 22

Architecture of HLCMi/Charm++ in LLCMj

HLCM
Parser

Charm++
Parser

Cleaner

Transfo
Engine

Charm++
Dumper

Or Executor

Chooser

Type
Filter

Constraint
Filter

Resource
Accessor

Driver
(Main)

Exported
References

Imported
References

Resource
Repository

Resource
Filler

Plan
Repository

Example of HLCM

Shared Memory
MxN Communications

Hierarchical CEM Application

Example of HLCM

Shared Memory
MxN Communications

Advanced Chooser

November 23rd 2010 High Performance Components with Charm++ and OpenAtom 25

Shared Memory Connector

SharedMem
role access

Use<DataAccess>

connector SharedMem<role access>;

November 23rd 2010 High Performance Components with Charm++ and OpenAtom 26

Shared Memory Connector Implementation
for Intra-Process Components

SharedMem

LocalMemoryStore

UseProvide

role provider

role user

generator LocalSharedMem<Integer N> implements
SharedMem<access=each (i:[1..N]){ LocalReceptacle<DataAccess> } >
{
 LocalMemoryStore<N> store;
 each (i:[1..N]) {
 store.access[i].user+=access[i];
} }

November 23rd 2010 High Performance Components with Charm++ and OpenAtom 27

Shared Memory Connector Implementation
for Inter-Processes, Intra-Node Components

SM

PosixSharer

PosixSharer

PosixSharer

UseProvide

role user role provider

Locality Constraint
«same process» generator PosixSharedMem<Integer N>

implements SharedMem<access=each(i:[1..N]){LocalReceptacle<DataAccess>}>
when samesystem(each (i:[1..N]){ this.access }) {
 each (i:[1..N]) {
 PosixSharer node[i];
 node[i].access.user += this.access[i];
} }

November 23rd 2010 High Performance Components with Charm++ and OpenAtom 28

Shared Memory Connector Implementation
for Inter-Processes, Inter-Node Components

SM

JuxMem
Manager

JuxMemPeer

JuxMemPeer

JuxMemPeer

UseProvide

Locality Constraint
«same process»

generator JuxMem<Integer N> implements
SharedMem<access=each(i:[1..N]){LocalReceptacle<DataAccess>}> {
 JuxMemManager<N> manager;
 each (i:[1..N]) {
 JuxMemPeer peer[i];
 peer[i].access.user += access[i];
 merge ({peer[i].internal, manager.internal[i]});
 } }

Example of HLCM

Shared Memory
MxN Communications

Advanced Chooser

November 23rd 2010 High Performance Components with Charm++ and OpenAtom 30

Parallel Components & UseProvide Connector

Role user

Role provider

Server Client UP

November 23rd 2010 High Performance Components with Charm++ and OpenAtom 31

Parallel Components & UseProvide Connector

role user

role provider

Client0

Client1

Server0

Server1

Server2

UP

ParallelServiceProvider<N>

PartialService
Provider

ProviderPartialServiceFacet

ParallelServiceFacet<N>

rôle provider

Parallel Components & UseProvide Connector

November 23rd 2010 High Performance Components with Charm++ and OpenAtom 33

Parallel Components & UseProvide Connector

Userside
Redistributor<2,3>

Userside
Redistributor<2,3>

Serverside
Redistributor<2,3>

Serverside
Redistributor<2,3>

Serverside
Redistributor<2,3>

C0

C1

S0

S1

S2

November 23rd 2010 High Performance Components with Charm++ and OpenAtom 34

Parallel Components & UseProvide Connector

Userside
Redistributor<2,3>

Userside
Redistributor<2,3>

Serverside
Redistributor<2,3>

Serverside
Redistributor<2,3>

Serverside
Redistributor<2,3>

C0

C1

S0

S1

S2

November 23rd 2010 High Performance Components with Charm++ and OpenAtom 35

Parallel Components & UseProvide Connector

Userside
Redistributor<2,3>

Userside
Redistributor<2,3>

Serverside
Redistributor<2,3>

Serverside
Redistributor<2,3>

Serverside
Redistributor<2,3>

C0

C1

S0

S1

S2

November 23rd 2010 High Performance Components with Charm++ and OpenAtom 36

Parallel Components & UseProvide Connector

  HLCM/CCM
vs
PaCO++

  Cluster
  1 Gbs Ethernet
  HLCM/CCM
  #Client=3
  #Server=4

Example of HLCM

Shared Memory
MxN Communications
Advanced Chooser

November 23rd 2010 High Performance Components with Charm++ and OpenAtom 38

Hierarchical Programming Model

  Application model
  Moldable, non evolving applications

  Grid-enabled CEM application
  French ANR DISCOGRID
  Set of MPI-based codes

  How many groups?
  Size of each group?

  Resource model
  Hierarchical machines

  Federation of clusters

  Resource selection
  Application-specific heuristic available [CKP’09]

Level 0 Level 1 Level 2

0

0.0 0.1

0.0.0 0.0.1 0.0.2 0.1.0 0.1.1

Socket	

MPI	

 MPI	

November 23rd 2010 High Performance Components with Charm++ and OpenAtom 39

DhicoMpiImpl<C,X,3> DhicoMpi<C,X>

C

HLCM: Hierarchical Programming Model

X C

C

C

X

M
P

I
Implements	

November 23rd 2010 High Performance Components with Charm++ and OpenAtom 40

HLCM: Hierarchical Programming Model

composite DhicoSkeletonImpl<component C, Integer N>
implements DhicoSkeleton<C> {
 each (i:[1..N]){
 DhicoMPI<C, SocketConn> inst[i];
 }
 merge (each(i:[1..N]){ inst[i].exposed });
}

DhicoSkeletonImpl<C,2>

X
DhicoMpi<C,X>

C X
DhicoMpI<C,X>

C
	

November 23rd 2010 High Performance Components with Charm++ and OpenAtom 41

Architecture of HLCMi/Dhico in LLCMj

HLCM
Parser

Cleaner

Transfo
Engine

Dhico
Dumper

Chooser

Type
Filter

Constraint
Filter

Resource
Accessor

Driver
(Main)

Resource
Repository

Resource
Filler

Plan
Repository

 Straitforward implementation of HLCM/Dhico
& an heuristic to determine free parameters

November 23rd 2010 High Performance Components with Charm++ and OpenAtom 42

HLCM: Hierarchical Programming Model

  Preliminary scalability experiment

November 23rd 2010 High Performance Components with Charm++ and OpenAtom 43

HLCM: Hierarchical Programming Model

Conclusion

November 23rd 2010 High Performance Components with Charm++ and OpenAtom 45

  HLCM
  Component, genericity, hierarchy, connector, open connection,

component&connector implementation choice
  Static model

  Dynamicity to be added
  HLCMi, an operational implementation

  HLCM/Charm++
  Dedicated language for describing primitive component
  Parser operational
  Dumper / Launcher to be done

  OpenAtom & HLCM/Charm++
  Synthetic version of PairCalculator/Ortho to be developed

  Model & tool validation
  Real experiments with PairCalculator/Ortho to be done

Current Status & Ongoing Work

