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Context of this work

= |nitial discussion with Laxmikant Kale
= 2" workshop, Urbana, 2-4 December 2009

= Actual start
= Visit of Julien Bigot & Christian Perez at UIUC, 19-23 July 2010

= Fruitful discussion with

= Phil Miller (Charm++)
=« Eric Bohm and Ramprasad Venkataraman (OpenAtom)
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Outline of the talk

= Motivation
= OpenAtom

= Overview of HLCM core concepts
= HLCM/Charm++

= Some examples with HLCM

= Shared Memory
= MxN
= Advanced Chooser

= Current status & ongoing work
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Overview of OpenAtom (UIUC)

= Ab-initio quantum chemistry code based on Charm++
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PairCalulator & Orthonormalization Modules

= PairCalculators
= 4-dimensional (4D) array

= Used in the force regularization
and orthonormalization phases
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= Interactions between PairCalculator

PairCalculators & Ortho

= Specialized Reduction & Multicast based operations
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Issues with OpenAtom (PC/Ortho)

= No well defined separation of codes
= How to replace the Ortho code with an improved version?

= Mixing of concerns

= PairCalculator & Ortho codes mixed with
optimized communication code

= No abstraction for adapting the application
(code and performance portability)

= How to select an Ortho implementation in function of
hardware and input data?

= How to select an optimized communication implementation
between PC & Ortho?
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Objectives

= Enable code-reuse
= E.g. the Ortho module of OpenAtom
= Let expert develop a piece of code

= Enable adaptation when re-using code
= E.g. should Ortho be based on double? What about quad?
= Let re-use code with parameterization options

= Enable any kind of composition operators
= E.g the 4D-2D interactions between PairCalculator & Ortho
= Do not impose any communication models

= Enable efficient implementation of composition operators
= E.g. by having a 4D-2D op. instead of reduction+multicast op.
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How to Achieve Those Objectives?

= Enable code-reuse

= Software Component
= Primitive component for re-using implementation code
= Composite component for re-using assemblies of components

= Enable adaptation when re-using code
= Genericity

= Enable any kind of composition operators
= Connectors

= Enable efficient implementation of composition operators
= Open connection
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Overview of Core Concepts of
High Level Component Model (HLCM)

Component, Connector, Hierarchy,
Genericity, & Template Meta-Programming
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HLCM: High Level Component Model

= Defined in the PhD of Julien Bigot

= Major concepts
= Component model
= Primitive (abstract) and composite
= Connector based
= Primitive and composite
= Generic model
= Support meta-programming (template a la C++)
= Currently static
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Connectors

s Without connectors

= Direct connection between ports
through model provided interactions

= With connectors
Originally defined in ADLs
Connectors reify connections
= Aname
= Asetofroles
Any number of roles

= Can be 1stclass entities

= Provided by the underlying model connector UseProvide
« User implemented < role user, role provider >;

@ ®
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HLCM: Component

= Black box that may expose some open connections

connector UseProvide
< role user, role provider >;

@ ®

Provides InterfaceA cnxA
Uses InterfaceB cnxB

Provider role fulfiled User role left “open”

User role fulfilled Provider role left “open”
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HLCM: Composite Component

component Example { }

composite ExampleImpl
implements Example

{
HelloComponent hello;
ClientComponent client;

connection cnx;

cnx |= hello.talk;
cnx |= client.say;
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cnx

Ry

say talk

Results in
ExampleImpl
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HLCM: Primitive Components

= Abstract Component Model
= Primitive components not defined directly by HLCM

= Primitives defined by a specialization
= HLCM/CCM, HLCM/Charm++

= HLCM/Charm++
= Primitive component: Charm++ Chare + some design constraints

= Primitive connector: UseProvide interactions
= A chare may provide an interface or make use of a (remote) interface

component HelloComponent {
UseProvide { provider [ CharmProvide!(Hello) ]; } talk;

¥

Fulfilled role (Open) Connection

HeIIoComponent\@E\
User: role left “open”
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HLCM/Charm++ (Nov. 2010)

component HelloComponent { HLCM
UseProvide { provider [ CharmProvide!(Hello) ]; } talk;
)

chare HelloC implements HelloComponent { Charm++

exports talk type=Hello as talk.provider; Primitive
} Declaration
chare HelloC : Componentinterface, Hello { Charm++

entry HelloC();

// Hello Interface Implementation (functional code)

entry void hello() { CkPrintf(“Hello'\n"); }

// Provides Hello talk (could be generated)

entry [sync] void provider_set_talk(CProxy_Componentinterface& pssi,

int n, char name[n], long key)
{ pssi._set(thishandle, n, port, key); }

}
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Engineering issues with HLCM/Charm++

= Need multiple inheritance
= Implemented by the Charm++ team during summer 2010
= Validated with components providing 3 interfaces

= Engineering issue with application linkage

= Charm needs to know all chares to generate stubs
= Prevent dynamic loading of components
= Current solution: statically list all used components in Makefile
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HLCM: User Implemented Connector

generator LoggingUP<UI,PI>

Implements UseProvide<provider = { CharmProvide!<PI> },
user = { CharmUsel<UI> >

when ( UI super PI )

{
Logger<UI> proxy;

proxy.clientSide.user += this.user;
proxy.serverSide.provider += this.provider;

¥

rqLogger<Ul>

provider
interface = Pl

user
interface = Ul

I

when PI subtype of UI and
user.host = provider.host
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HLCM: Benefit of Open Connections

reuse

Ik
merge {}€XPOSE, @E

Results in What implementation to
use for this connection?
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HLCM Connection Implementation:
a Planning Choice

Single host _ v
distribution _ -~~~

Multiple hosts e
distribution

= Component and connection implementation choice made
by choosers

= Not defined in HLCM

= Specialization depend
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Model based HLCM Definition

= Connector

Specialization

- GenericTypeDefinition PorttypeSetParameter

ConnectorSpecializ

ation Connector @ _ Role

s Connection

Named

PorttypeSetArgument PorttypeSetParameter

Role

OpenConnection - ConnectorSpecialization . FulfilledRole PorttypeSpecialization

= Assembly

Bundlelnstance |

componentinstance
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Assembly RoleReference
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HLCMi: An Implementation of HLCM

= Model-transformation based
= Eclipse Modeling Tools

= Mainly Emfatic files
= Used to generate ecore & Java files

= HLCM core (PIM + transformation)
= 127 UML classes
= 470 Emfatic lines
= 25000 generated Java lines

= + 2000 Java lines for transformation engine
= OMG QVT was not well implemented

= Already implemented connectors

= Use/Provide, Shared Data, Collective Communications,
“MxN” RMI, Irregular Mesh
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Architecture of HLCMi/Charm++ in LLCMj

Resource Type Constraint
Repository Filter Filter
Plan
Repository
Cleaner Res_ource IREsOUrce = Chooser [~
Filler ACCESSOr fmind
+ —
Charm++
HLCM s Charm++ o Tran§fo ————— Dumper
Parser Parser Engine O
Exported Driver Imported
References (Main) | References
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Example of HLCM

Shared Memory
MxN Communications
Hierarchical CEM Application
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Example of HLCM

Shared Memory
MxN Communications
Advanced Chooser
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Shared Memory Connector

connector SharedMem<role access>;

4 )
role access
SharedMem

‘S 7 )
N
4 )

o 7

N

\_ ) > Use<DataAccess>
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Shared Memory Connector Implementation
for Intra-Process Components

LocalMemoryStore role provider

aredMem
UseProvide

U role user

—__
generator LocalSharedMem<Integer N> implements
SharedMem<access=each (i:[1..N]){ LocalReceptacle<DataAccess> } >

{

LocalMemoryStore<N> store;
each (i:[1..N]) {
store.access[i].user+=access[i];

3}

‘VM.ON WI NRIA November 23rd 2010 High Performance Components with Charm++ and OpenAtom 26




Shared Memory Connector Implementation
for Inter-Processes, Intra-Node Components

role user role provider

-
\ Vs e

Lemmmemnneeeeeeeseneesaenaatios Locality Constraint

generator PosixSharedMem<Integer N> UseProvide (SdMe PIOLESsy
implements SharedMem<access=each(i:[1..N]){LocalReceptacle<DataAccess>}>
when samesystem(each (i:[1..N]){ this.access }) {
each (i:[1..N]) {
PosixSharer nodeli];
node[i].access.user += this.accessl[i];

3}
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Shared Memory Connector Implementation
for Inter-Processes, Inter-Node Components

Locality Constraint
«same process»

UseProvid

generator JuxMem<Integer N> /implements
SharedMem<access=each(i:[1..N]){LocalReceptacle<DataAccess>}> {
JuxMemManager<N> manager;
each (i:[1..N]) {
JuxMemPeer peerli];
peer[i].access.user += access|i];
merge ({peer[i].internal, manager.internal[i]});
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Example of HLCM

Shared Memory
MxN Communications
Advanced Chooser
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Parallel Components & UseProvide Connector

Client
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Role user

Server

Role provider
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Parallel Components & UseProvide Connector

-

\_

ClientO

Client1
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role provider
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Server(

Server1
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Parallel Components & UseProvide Connector

ﬁarallelServiceProvideKN> \

réle provider

ParallelServiceFacet<N>

ProviderPartialServiceFacet
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Parallel Components & UseProvide Connector

Serverside
Res ribatot <,3>

Userside
Redistributor<2,3>

SO

e
distributon<g

erversi
distributor

Userside
Redistributor<2,3>
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Parallel Components & UseProvide Connector

Serverside
Res ribatot <,3>

Userside
Redistributor<2,3>

SO

Serverside
distributon<g

S1

erversi
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Userside
Redistributor<2,3>
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Parallel Components & UseProvide Connector

Serverside
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Parallel Components & UseProvide Connector
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Example of HLCM

Shared Memory
MxN Communications
Advanced Chooser
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Hierarchical Programming Model

= Application model

= Moldable, non evolving applications

« Grid-enabled CEM application
French ANR DISCOGRID
Set of MPIl-based codes

How many groups?
Size of each group?

s Resource model Level 1 Lol 2
= Hierarchical machines 0

= Federation of clusters 00 Socket
MPI MPI

0.0.1 0.0.2 0.1.0 0.1.1

s Resource selection
= Application-specific heuristic available [CKP’09]
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HLCM: Hierarchical Programming Model

-

DhicoMpi<C,X>

~

/
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HLCM: Hierarchical Programming Model

~

\_

/ DhicoSkeletonImpl<C,2>
e I
DhicoMpi<C,X> /DhicoMpI<C,X>\
o @
P
- ) _ )

/

composite DhicoSkeletonImpl<component C, Integer N>
implements DhicoSkeleton<C> {

¥
AVILON WINRIA

each (i:[1..N])

DhicoMPI<C, SocketConn> inst[i];

}

merge (each(i:[1..N]){ inst[i].exposed });

November 23rd 2010
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Architecture of HLCMi/Dhico in LLCM);

= Straitforward implementation of HLCM/Dhico
& an heuristic to determine free parameters

Rosion Bivris

Resource
Repository

Type
Filter

"

Constraint
Filter

Plan
Repository

1

Transfo
Engine

Resource Resource
Cleaner : —
Filler ACCESSOT |y
HLCM 20—
Parser \
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HLCM: Hierarchical Programming Model

= Preliminary scalability experiment
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HLCM: Hierarchical Programming Model
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Conclusion
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Current Status & Ongoing Work

= HLCM

= Component, genericity, hierarchy, connector, open connection,
component&connector implementation choice

= Static model
= Dynamicity to be added

= HLCMI, an operational implementation
= HLCM/Charm++
= Dedicated language for describing primitive component
= Parser operational
= Dumper / Launcher to be done
= OpenAtom & HLCM/Charm++

= Synthetic version of PairCalculator/Ortho to be developed
= Model & tool validation
= Real experiments with PairCalculator/Ortho to be done
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