High Performance Components

with Charm++ and OpenAtom
(Work in Progress)

AVILON

Christian Perez

Graal/Avalon INRIA EPI
LIP, ENS Lyon, France

Joint Laboratory for Petascale Computing
University of lllinois at Urbana-Champaign

23 November 2010 W’NRIA

Context of this work

= |nitial discussion with Laxmikant Kale
= 2" workshop, Urbana, 2-4 December 2009

= Actual start
= Visit of Julien Bigot & Christian Perez at UIUC, 19-23 July 2010

= Fruitful discussion with

= Phil Miller (Charm++)
=« Eric Bohm and Ramprasad Venkataraman (OpenAtom)

AVKLON W}NR[A November 23rd 2010 High Performance Components with Charm++ and OpenAtom

Outline of the talk

= Motivation
= OpenAtom

= Overview of HLCM core concepts
= HLCM/Charm++

= Some examples with HLCM

= Shared Memory
= MxN
= Advanced Chooser

= Current status & ongoing work

AVILON WINRIA November 23rd 2010 High Performance Components with Charm++ and OpenAtom

Overview of OpenAtom (UIUC)

= Ab-initio quantum chemistry code based on Charm++

Transpose
.'I"F - I Reduction

fi?:gijfi- Ve EEEE llllllll\ .

11
11l v L
. wwn!
[|
l"{-""'l B RhoGHart
= seeat /W u
.... Multicast

GSpace Transpose Density
PairCalculator

Ortho

Vi

AVKLON ZvINRIA November 23rd 2010 High Performance Components with Charm++ and OpenAtom 4

PairCalulator & Orthonormalization Modules

= PairCalculators
= 4-dimensional (4D) array

= Used in the force regularization
and orthonormalization phases

_f
N

.'r 'I'
= 2D array .-f. -Iﬁ
llll
= Interactions between PairCalculator

PairCalculators & Ortho

= Specialized Reduction & Multicast based operations

AVKLON WINRIA November 23rd 2010 High Performance Components with Charm++ and OpenAtom

Issues with OpenAtom (PC/Ortho)

= No well defined separation of codes
= How to replace the Ortho code with an improved version?

= Mixing of concerns

= PairCalculator & Ortho codes mixed with
optimized communication code

= No abstraction for adapting the application
(code and performance portability)

= How to select an Ortho implementation in function of
hardware and input data?

= How to select an optimized communication implementation
between PC & Ortho?

AVKLON WINRIA November 23rd 2010 High Performance Components with Charm++ and OpenAtom

Objectives

= Enable code-reuse
= E.g. the Ortho module of OpenAtom
= Let expert develop a piece of code

= Enable adaptation when re-using code
= E.g. should Ortho be based on double? What about quad?
= Let re-use code with parameterization options

= Enable any kind of composition operators
= E.g the 4D-2D interactions between PairCalculator & Ortho
= Do not impose any communication models

= Enable efficient implementation of composition operators
= E.g. by having a 4D-2D op. instead of reduction+multicast op.

AVKLON WINRIA November 23rd 2010 High Performance Components with Charm++ and OpenAtom

How to Achieve Those Objectives?

= Enable code-reuse

= Software Component
= Primitive component for re-using implementation code
= Composite component for re-using assemblies of components

= Enable adaptation when re-using code
= Genericity

= Enable any kind of composition operators
= Connectors

= Enable efficient implementation of composition operators
= Open connection

AVKLON W}NR[A November 23rd 2010 High Performance Components with Charm++ and OpenAtom

Overview of Core Concepts of
High Level Component Model (HLCM)

Component, Connector, Hierarchy,
Genericity, & Template Meta-Programming

Avu.ow W INRIA

HLCM: High Level Component Model

= Defined in the PhD of Julien Bigot

= Major concepts
= Component model
= Primitive (abstract) and composite
= Connector based
= Primitive and composite
= Generic model
= Support meta-programming (template a la C++)
= Currently static

‘VILON WINRIA November 23rd 2010 High Performance Components with Charm++ and OpenAtom

10

Connectors

s Without connectors

= Direct connection between ports
through model provided interactions

= With connectors
Originally defined in ADLs
Connectors reify connections
= Aname
= Asetofroles
Any number of roles

= Can be 1stclass entities

= Provided by the underlying model connector UseProvide
« User implemented < role user, role provider >;

@ ®

lVlLON WI NRIA November 23rd 2010 High Performance Components with Charm++ and OpenAtom 11

HLCM: Component

= Black box that may expose some open connections

connector UseProvide
< role user, role provider >;

@ ®

Provides InterfaceA cnxA
Uses InterfaceB cnxB

Provider role fulfiled User role left “open”

User role fulfilled Provider role left “open”

‘VILON WI NRIA November 23rd 2010 High Performance Components with Charm++ and OpenAtom 12

HLCM: Composite Component

component Example { }

composite ExampleImpl
implements Example

{
HelloComponent hello;
ClientComponent client;

connection cnx;

cnx |= hello.talk;
cnx |= client.say;

‘VALON BIINRIA November 23rd 2010

ExampleImpl

cnx

Ry

say talk

Results in
ExampleImpl

High Performance Components with Charm++ and OpenAtom 13

HLCM: Primitive Components

= Abstract Component Model
= Primitive components not defined directly by HLCM

= Primitives defined by a specialization
= HLCM/CCM, HLCM/Charm++

= HLCM/Charm++
= Primitive component: Charm++ Chare + some design constraints

= Primitive connector: UseProvide interactions
= A chare may provide an interface or make use of a (remote) interface

component HelloComponent {
UseProvide { provider [CharmProvide!(Hello)]; } talk;

¥

Fulfilled role (Open) Connection

HeIIoComponent\@E\
User: role left “open”

lVlLON W}NR[A November 23rd 2010 High Performance Components with Charm++ and OpenAtom 14

HLCM/Charm++ (Nov. 2010)

component HelloComponent { HLCM
UseProvide { provider [CharmProvide!(Hello)]; } talk;
)

chare HelloC implements HelloComponent { Charm++

exports talk type=Hello as talk.provider; Primitive
} Declaration
chare HelloC : Componentinterface, Hello { Charm++

entry HelloC();

// Hello Interface Implementation (functional code)

entry void hello() { CkPrintf(“Hello'\n"); }

// Provides Hello talk (could be generated)

entry [sync] void provider_set_talk(CProxy_Componentinterface& pssi,

int n, char name[n], long key)
{ pssi._set(thishandle, n, port, key); }

}

‘VILON WINRIA November 23rd 2010 High Performance Components with Charm++ and OpenAtom

15

Engineering issues with HLCM/Charm++

= Need multiple inheritance
= Implemented by the Charm++ team during summer 2010
= Validated with components providing 3 interfaces

= Engineering issue with application linkage

= Charm needs to know all chares to generate stubs
= Prevent dynamic loading of components
= Current solution: statically list all used components in Makefile

AVILON W}NR[A November 23rd 2010 High Performance Components with Charm++ and OpenAtom

16

HLCM: User Implemented Connector

generator LoggingUP<UI,PI>

Implements UseProvide<provider = { CharmProvide!<PI> },
user = { CharmUsel<UI> >

when (UI super PI)

{
Logger<UI> proxy;

proxy.clientSide.user += this.user;
proxy.serverSide.provider += this.provider;

¥

rqLogger

provider
interface = Pl

user
interface = Ul

I

when PI subtype of UI and
user.host = provider.host

AVILON WINRIA November 23rd 2010 High Performance Components with Charm++ and OpenAtom

17

HLCM: Benefit of Open Connections

reuse

Ik
merge {}€XPOSE, @E

Results in What implementation to
use for this connection?

lVlLDN W’NRIA November 23rd 2010 High Performance Components with Charm++ and OpenAtom

HLCM Connection Implementation:
a Planning Choice

Single host _ v
distribution _ -~~~

Multiple hosts e
distribution

= Component and connection implementation choice made
by choosers

= Not defined in HLCM

= Specialization depend
‘VlLON WI NRIA November 23rd 2010 High Performance Components with Charm++ and OpenAtom

19

Model based HLCM Definition

= Connector

Specialization

- GenericTypeDefinition PorttypeSetParameter

ConnectorSpecializ

ation Connector @ _ Role

s Connection

Named

PorttypeSetArgument PorttypeSetParameter

Role

OpenConnection - ConnectorSpecialization . FulfilledRole PorttypeSpecialization

= Assembly

Bundlelnstance |

componentinstance

AVALON BIINRIA November 23rd 2010

*
<« ConnexionReference

— ConnectionMerge

Assembly RoleReference
o < RoleFulfillment -
- PortReference

High Performance Components with Charm++ and OpenAtom

20

HLCMi: An Implementation of HLCM

= Model-transformation based
= Eclipse Modeling Tools

= Mainly Emfatic files
= Used to generate ecore & Java files

= HLCM core (PIM + transformation)
= 127 UML classes
= 470 Emfatic lines
= 25000 generated Java lines

= + 2000 Java lines for transformation engine
= OMG QVT was not well implemented

= Already implemented connectors

= Use/Provide, Shared Data, Collective Communications,
“MxN” RMI, Irregular Mesh

AVILON W}NR[A November 23rd 2010 High Performance Components with Charm++ and OpenAtom

21

Architecture of HLCMi/Charm++ in LLCMj

Resource Type Constraint
Repository Filter Filter
Plan
Repository
Cleaner Res_ource IREsOUrce = Chooser [~
Filler ACCESSOr fmind
+ —
Charm++
HLCM s Charm++ o Tran§fo ————— Dumper
Parser Parser Engine O
Exported Driver Imported
References (Main) | References

lVlLON W}NR[A November 23rd 2010 High Performance Components with Charm++ and OpenAtom

Example of HLCM

Shared Memory
MxN Communications
Hierarchical CEM Application

Avn.on %’ INRIA

Example of HLCM

Shared Memory
MxN Communications
Advanced Chooser

Lvn.ow ZINRIA

Shared Memory Connector

connector SharedMem<role access>;

4)
role access
SharedMem

‘S 7)
N
4)

o 7

N

_) > Use<DataAccess>

‘VM.ON WI NRIA November 23rd 2010 High Performance Components with Charm++ and OpenAtom

Shared Memory Connector Implementation
for Intra-Process Components

LocalMemoryStore role provider

aredMem
UseProvide

U role user

—__
generator LocalSharedMem<Integer N> implements
SharedMem<access=each (i:[1..N]){ LocalReceptacle<DataAccess> } >

{

LocalMemoryStore<N> store;
each (i:[1..N]) {
store.access[i].user+=access[i];

3}

‘VM.ON WI NRIA November 23rd 2010 High Performance Components with Charm++ and OpenAtom 26

Shared Memory Connector Implementation
for Inter-Processes, Intra-Node Components

role user role provider

-
\ Vs e

Lemmmemnneeeeeeeseneesaenaatios Locality Constraint

generator PosixSharedMem<Integer N> UseProvide (SdMe PIOLESsy
implements SharedMem<access=each(i:[1..N]){LocalReceptacle<DataAccess>}>
when samesystem(each (i:[1..N]){ this.access }) {
each (i:[1..N]) {
PosixSharer nodeli];
node[i].access.user += this.accessl[i];

3}

AVKLON W}NR[A November 23rd 2010 High Performance Components with Charm++ and OpenAtom 27

Shared Memory Connector Implementation
for Inter-Processes, Inter-Node Components

Locality Constraint
«same process»

UseProvid

generator JuxMem<Integer N> /implements
SharedMem<access=each(i:[1..N]){LocalReceptacle<DataAccess>}> {
JuxMemManager<N> manager;
each (i:[1..N]) {
JuxMemPeer peerli];
peer[i].access.user += access|i];
merge ({peer[i].internal, manager.internal[i]});

‘VM.ON W}NR[A November 23rd 2010 High Performance Components with Charm++ and OpenAtom 28

Example of HLCM

Shared Memory
MxN Communications
Advanced Chooser

Lvn.on ZINRIA

Parallel Components & UseProvide Connector

Client

‘VILON W’NRIA

November 23rd 2010

Role user

Server

Role provider

High Performance Components with Charm++ and OpenAtom

30

Parallel Components & UseProvide Connector

-

_

ClientO

Client1

AVALON BIINRIA November 23rd 2010

\
Y

role user

role provider

-

_

Server(

Server1

Server2

~

/

High Performance Components with Charm++ and OpenAtom

31

Parallel Components & UseProvide Connector

ﬁarallelServiceProvideKN> \

réle provider

ParallelServiceFacet<N>

ProviderPartialServiceFacet

‘vxwu ZIINRIA

Parallel Components & UseProvide Connector

Serverside
Res ribatot <,3>

Userside
Redistributor<2,3>

SO

e
distributon<g

erversi
distributor

Userside
Redistributor<2,3>

‘VILON W] NRIA November 23rd 2010 High Performance Components with Charm++ and OpenAtom 33

Parallel Components & UseProvide Connector

Serverside
Res ribatot <,3>

Userside
Redistributor<2,3>

SO

Serverside
distributon<g

S1

erversi
distributor

Userside
Redistributor<2,3>

‘VILON W] NRIA November 23rd 2010 High Performance Components with Charm++ and OpenAtom 34

Parallel Components & UseProvide Connector

Serverside
Res ribatot <,3>

Userside
Redistributor<2,3>

SO

Serverside
distributon<g

erversi
tributor

Userside
Redistributor<2,3>

S
oIS
)

‘VlLON W] NRIA November 23rd 2010 High Performance Components with Charm++ and OpenAtom 35

Parallel Components & UseProvide Connector

1000

" HLCMMxN ——
= HLCM/CCM Dacors
VS Q00 Theoritical Maximum -------- -
++
PaCO 800 L)
700 e i
= Cluster @ ;s
o) s
= 1 Gbs EthernetZ &0 - i |
= HLCMICCM & _ | _
. Q /
= #Client=3 2
= #Server=4 5 or i f i
300 i
.':. f’
200 i/ -
". ;I
100 | -
0 1 z 23 = = PR | 2 2 a1l 2 PR | 1 PR | L M | 2 PR
10 100 1000 10000 100000 1e+06 1e+07 1e+08 1e+09
Message size (Bytes)

AVM_ON WI NRIA November 23rd 2010 High Performance Components with Charm++ and OpenAtom 36

Example of HLCM

Shared Memory
MxN Communications
Advanced Chooser

Lvn.ow ZINRIA

Hierarchical Programming Model

= Application model

= Moldable, non evolving applications

« Grid-enabled CEM application
French ANR DISCOGRID
Set of MPIl-based codes

How many groups?
Size of each group?

s Resource model Level 1 Lol 2
= Hierarchical machines 0

= Federation of clusters 00 Socket
MPI MPI

0.0.1 0.0.2 0.1.0 0.1.1

s Resource selection
= Application-specific heuristic available [CKP’09]

AVILON WINRIA November 23rd 2010 High Performance Components with Charm++ and OpenAtom

38

HLCM: Hierarchical Programming Model

-

DhicoMpi<C,X>

~

/

‘VILON ZIINRIA

November 23rd 2010

-<:

Implements

"

GﬂcoMpilmka,X,B?

High Performance Components with Ch

aaaaaaa

HLCM: Hierarchical Programming Model

~

_

/ DhicoSkeletonImpl<C,2>
e I
DhicoMpi<C,X> /DhicoMpI<C,X>\
o @
P
-) _)

/

composite DhicoSkeletonImpl<component C, Integer N>
implements DhicoSkeleton<C> {

¥
AVILON WINRIA

each (i:[1..N])

DhicoMPI<C, SocketConn> inst[i];

}

merge (each(i:[1..N]){ inst[i].exposed });

November 23rd 2010

High Performance Components with Charm++ and OpenAtom

40

Architecture of HLCMi/Dhico in LLCM);

= Straitforward implementation of HLCM/Dhico
& an heuristic to determine free parameters

Rosion Bivris

Resource
Repository

Type
Filter

"

Constraint
Filter

Plan
Repository

1

Transfo
Engine

Resource Resource
Cleaner : —
Filler ACCESSOT |y
HLCM 20—
Parser \

November 23rd 2010

/

Driver
(Main)

High Performance Components with Charm++ and OpenAtom

41

HLCM: Hierarchical Programming Model

= Preliminary scalability experiment

8000

7000

6000

5000

4000

Time (ms)

3000

2000

1000

0

‘VILON W’NRIA

1 I 1 1 1 I 1
Monolithic Choice Algo g
Overhead Monolithic Algo X
Two Stage Choice Algo *
Overhead Two Stage Algo] -
X X % X e X xx xXX/x X X< /szw/‘x'xx—y‘xgx“
- ’ X L2 < : = XRIT X KX TRXX X
Xy -xxxfxxxxxk‘xx‘/’"X“\”/AX;(’X M~z XX % X b4 1
XX 3'5+>+IE"
* X
+

November 23rd 2010

800 1000 1200 1400 1600

#nodes
High Performance Components with Charm++ and OpenAtom

42

HLCM: Hierarchical Programming Model

1400 1 1 1 1 1 I i 1
#generated component instances
Model overhead (in 1/100 s) X
1200 -
1000 |- -
800 |- -
XxxxxxxxXXXYXXXXXXXXxxXXxxxxxxxxxxx
600 X .
400 L XXXXXXXxxxx}_ixxxxxxxx 1
X
X
X X X s

200 | -

0 1 1 1 1 1 1 1

0 200 400 600 800 1000 1200 1400 1600

#nodes

‘VILON WI NRIA November 23rd 2010 High Performance Components with Charm++ and OpenAtom

Conclusion

AVILON 7 INRIA

Current Status & Ongoing Work

= HLCM

= Component, genericity, hierarchy, connector, open connection,
component&connector implementation choice

= Static model
= Dynamicity to be added

= HLCMI, an operational implementation
= HLCM/Charm++
= Dedicated language for describing primitive component
= Parser operational
= Dumper / Launcher to be done
= OpenAtom & HLCM/Charm++

= Synthetic version of PairCalculator/Ortho to be developed
= Model & tool validation
= Real experiments with PairCalculator/Ortho to be done

AVKLON W}NR[A November 23rd 2010 High Performance Components with Charm++ and OpenAtom

45

