Improving data locality in communication avoiding
LU and QR factorizations

DONFACK Simplice
INRIA Saclay

Collaborators:

Laura Grigori, Bill Gropp, Dahai Guo, Vivek Kale

November 23, 2010

Simplice DONFACK Improving data locality in communication avoiding LU and QR factorization

© Introduction
@ CALU and CAQR factorization

© Multithreaded CALU and CAQR
© Experimental section
@ Current work

© Conclusion

2/23

Introduction

Introduction

@ Architectural trends show an increasing communication cost
compared to the time it takes to perform arithmetic operations

o Motivated the design of communication avoiding algorithms that
minimize communication

o First results are CAQR [Demmel, Grigori, Hoemmen, Langou '08]
and CALU [Grigori, Demmel, Xiang '08], implemented for distributed
memory.

@ Multithreaded CALU and CAQR lead to important improvements for
tall and skinny matrices but no significant improvements obtained so
far for square matrices.

@ Our goal is to evaluate and improve performance of our
multithreaded algorithms on petascale machines.

3/23

Introduction

LU factorization with partial pivoting

Factorization on Pr by Pc grid of processors as implemented in SCALAPACK:

Forib =1 to n-1 step b
A(ib) = A(ib:n, ib:n)
© Compute panel factorization (pdgetf2) O(nlog:P;)
- find pivot in each column, swap rows

@ Apply all row permutations (pdlaswp)
O(n/b(logz P + logzPr))
- broadcast pivot information along the rows
- swap rows at left and right

© Compute block row of U (pdtrsm) O(n/blog:P.)
- broadcast right diagonal block of L of current panel

@ Update trailing matrix (pdgemm) O(n/b(log:P: + logzP.))
- broadcast right block column of L
- broadcast down block row of U

Pivoting requires communication among processors on distributed memory and

synchronisation between threads on multicores.

U

L[[t

.

4/23

Introduction

CALU and CAQR approach

Communication avoiding algorithms [Demmel, Grigori, Hoemmen,
Langou, Xiang '08] approach:

@ Decrease communication required for pivoting and overcome the
latency bottleneck of classic algorithms by

o performing the factorization of a block column (a tall and skinny
matrix) as a reduction operation

o and doing some redundant computations

@ They are communication optimal in terms of both latency and
bandwidth

@ They lead to important speedups on distributed memory computers

5/23

Introduction

@ Each panel factorization is computed as a reduction operation where
at each node a QR factorization is performed.

@ The reduction tree is chosen depending on the underlying
architecture.

e For a binary tree log,(Pr) steps are used.

[T 358 7 =
| B .‘*/

1=l

= [
| .
Agx
~

r o Dl renvD 6/23

Introduction

e Update the submatrix using the tree in logx(Pr) steps

1 B DT
T i
I Dl
' =

Figure: The update of the trailing submatrix is triggered by the reduction tree
used during panel factorization

7/23

Introduction

CALUJ[Grigori, Demmel, Xiang '08]

The panel factorization is performed in two steps:

@ A preprocessing steps aims at identifying at low communication cost good
pivot rows

@ The pivot rows are permuted in the first positions of the panel and LU
without pivoting of the panel is performed

v e W, W mive W, mw,
24 {_4—.[.4\ [41 —»[41‘ 141
Py |01 2 0 2 0] ——— J 2 4
O, o~ Tekls |y o|-Tens 2 4 oo|"Mekelo Mt *
11 {1 | L < Good pivets for
= z Y 14 factorizing W
,ﬁWxO; n,’w,/
£ 41
T
10 -
W —_ — s
(0 1) \/lij _."1 '4\ [4 :/
P, |14 o2 02 Zon L4
o 0| TkV: ‘J 5| ~TeLalE
lg 2 lo 2
'“W’1 W,
2 2
Py lo 2| (4 |
| o "TLLUs 0 2
4 2
_time

8/23

Multithreaded CALU and CAQR
Multithreaded CALU

Multithreaded CALU

@ The matrix is partitioned in blocks of size Tr x b
@ The computation of each block is associated with a task
@ The task dependency graph is scheduled using a dynamic scheduler

i @ 0
L aa «
i ' ' ©e 9 o o
Step:0 Step:1 Step:2 Step:3 Step:4 Step:5 97 ® - 79 -) A s)
(5]
I e 0 |
(]
: a a =l
@ | a a RN MY
Step:3 Step:4 Step:S Step:6 Step: 7 o o | ®
o [~] ®
P | Q;O
P | L s | P | © | g/
Step:6 Step: 7 Step: 8 Step:9 d
[°]

Figure: Matrix 4 x 4 blocks and T, = 2 and Corresponding task dependency
graph

9/23

Multithreaded CALU and CAQR
Multithreaded CALU

Multithreaded CALU

Panel factorization is performed in two steps: find good pivots at low

communication cost, permute them and compute LU factorization of the panel
without pivoting.

e 0
e

® © ¢ 2, ©

o 0 | 9

Q' = . |

@ N N
¥ <] ‘/a" = 9

e o 9

()

The panel factorization stays on the critical path but it'is done more efficiently

10/23

Multithreaded CALU and CAQR
Multithreaded CALU

Multithreaded CALU (Execution)

Figure: Example of execution of CALU for a 10° x 1000 tall skinny matrix,
using b =100 and T, = 1, on 8-core

Figure: Example of execution of CALU for a 10° x 1000 tall skinny matrix,
using b =100 and T, = 8, on 8-core

11/23

Experimental section

Environments

@ Tests performed on: two-socket, quad-core machine based on Intel
Xeon EMT64 processor running on Linux and on a four-socket,
quad-core machine based on AMD Opteron processor

e Comparison with MKL-10.0.4.23 and PLASMA 2.0 (with default
parameters)

e b= MIN(n,100) has been chosen as block size

12/23

Experimental section

Performance of CALU

Performance of CALU, MKL_dgetrf, PLASMA _dgetrf on 8 cores

Tall Skinny Matrix, CALU, m=10"

35
—+— MKL_dgetf2
—<— MKL_dgetrf
30+ PLASMA_dgetrf
—*— CALU(Tr=4)
—*— CALU(Tr=8)
251
2 201
o
o
[
© 15}
10+
5k
0 !
3 10

log2(n)

Figure: m=10° and varying n from 10 to 1000. 13/23

Experimental section

Performance of CAQR

Performance of CAQR, MKL_dgeqrf, PLASMA _dgeqrf on 8 cores

Tall Skinny Matrix, CAQR, m=10°

45-
—<— MKL_dgeqrf
40+ PLASMA_dgeqrf
—6— CAQR(Tr=2)
35r —— CAQR(Tr=4)
—*— CAQR(Tr=8)
30+ TSQR
o 25¢
o
S
& 20}
15+
10+
5
0

log2(n)

Figure: m=10° and varying n from 10 to 1000. 1423

Experimental section

Profiling: CALU with dynamic scheduling

| AT Ay
WA YV VWV

pissnac] M M A NV T .
‘l.‘.f".” I YTV i
) | | IR} +
- Wil f B i H |-

Figure: L2,L3 Cache misses on Bluewaters Power 7. CALU with dynamic
scheduling. m=n=5000, b=150, P =4 x 2

Table: Average

L2 total cache misses | 25M
L3 total cache misses | 15M
Fetch task time 0.47%

15/23

Current work

CALU with dynamic scheduling with data locality

@ Good mapping of task to processors using dynamic scheduler to
improve data locality.

@ Schedule a task using a queue of threads associated to recent
operation on the corresponding bloc to reuse data.

@ Minimize the number of transferts from slow to fast memory.

16/23

Current work

CALU with dynamic scheduling and strict data locality

@ No workstealing
o Bad load balancing

F—
| AT
Moo d et Mol b Adsfepissnlnmn | UL

Figure: L2,L3 Cache misses on Bluewaters Power 7. CALU with dynamic
scheduling and strict data locality . m=n=5000, b=150, P =4 x 2

Table: Average

L2 total cache misses | 12.5M
L3 total cache misses | 3.5M
Fetch task time 2.27%

17/23

Current work

CALU with dynamic scheduling, locality and workstealing

o Workstealing

A ATy
YW Y Ty
YW VYW VY Y Yy [

"IIDHMMMIM LIA T A INAS

I I\Huumunuﬁu \,'HMH‘MH AT Al WAy

il \HI\H\HH VU LA LU by UL LY | Ty IR
AT R | AR AR AR IR R TR ARIRS TR AR R A SR

Figure: L2,L3 Cache misses on Bluewaters Power 7. CALU with dynamic
scheduling, data locality and workstealing . m=n=5000, b=150, P = 4 x 2

Table: Average

L2 total cache misses | 20M
L3 total cache misses | 12.5M
Fetch task time 1.58%

18/23

Current work

First results on Intel X86_64, 16 cores (using mkl blas)

Table: CALU performance, M=N=5000, b=100, values:Gflops/s

Gflops/s
dgetrf 46.45
CALU (no pivoting, diagonal block as pivot) | 66,08
CALU (dynamic scheduling) 59,96
CALU (dynamic + Locality) 60,51
CALU (panel perform by dgetrf) 54,19

19/23

Current work

First results on Bluewaters P7, (using essl)

Table: CALU performance, M=N=5000, b=100, values:Gflops/s

2x4 4x4 4x8
CALU (no pivoting, diagonal block as pivot) | 147,97 | 255,10 | 248,68
CALU (dynamic scheduling) 134,17 | 206,60 | 177,62
CALU (dynamic 4 Locality) 132,32 | 206,33 | 177,72

20/23

Conclusion

Conclusion

@ Multithreaded CALU and CAQR lead to important improvements for
tall and skinny matrices with respect to the corresponding routines
in MKL and PLASMA.

@ Improving data locality in CALU and CAQR is a trade-off between
dequeue time and cache misses.

21/23

Conclusion

Prospects

@ Improve the performance of the trailing matrix update by increasing
the block size to optimize BLAS3 operations.

e Combining static/dynamic scheduling

o Overlap the panel factorization with dynamic small task

Process 0 "™ T Y N T Y™ T T Y TR
Thread oL P N T T " ™ ¥ T R
Thread 02 ™ T T T~ Y T 1™ W R
Thread 03 " T Y Y Y 1T T I N T
Thread 04 | T TN Y T~ I T~ T ™ W N
Thread 05 | ™ I T 1 ™~ Y I
Thread 0:6 | A b o

Thread 0:7

Figure: CAQR prediction

22/23

Conclusion

Thank you

Thank you

23/23

	Introduction
	CALU and CAQR factorization

	Multithreaded CALU and CAQR
	Experimental section
	Current work
	Conclusion

