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Introduction

Introduction

@ Architectural trends show an increasing communication cost
compared to the time it takes to perform arithmetic operations

o Motivated the design of communication avoiding algorithms that
minimize communication

o First results are CAQR [Demmel, Grigori, Hoemmen, Langou '08]
and CALU [Grigori, Demmel, Xiang '08], implemented for distributed
memory.

@ Multithreaded CALU and CAQR lead to important improvements for
tall and skinny matrices but no significant improvements obtained so
far for square matrices.

@ Our goal is to evaluate and improve performance of our
multithreaded algorithms on petascale machines.
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Introduction

LU factorization with partial pivoting

Factorization on Pr by Pc grid of processors as implemented in SCALAPACK:

Forib =1 to n-1 step b
A(ib) = A(ib:n, ib:n)
© Compute panel factorization (pdgetf2) O(nlog:P;)
- find pivot in each column, swap rows

@ Apply all row permutations (pdlaswp)
O(n/b(logz P + logzPr))
- broadcast pivot information along the rows
- swap rows at left and right

© Compute block row of U (pdtrsm)  O(n/blog:P.)
- broadcast right diagonal block of L of current panel

@ Update trailing matrix (pdgemm)  O(n/b(log:P: + logzP.))
- broadcast right block column of L
- broadcast down block row of U

Pivoting requires communication among processors on distributed memory and

synchronisation between threads on multicores.
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Introduction

CALU and CAQR approach

Communication avoiding algorithms [Demmel, Grigori, Hoemmen,
Langou, Xiang '08] approach:

@ Decrease communication required for pivoting and overcome the
latency bottleneck of classic algorithms by

o performing the factorization of a block column (a tall and skinny
matrix) as a reduction operation

o and doing some redundant computations

@ They are communication optimal in terms of both latency and
bandwidth

@ They lead to important speedups on distributed memory computers
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Introduction

@ Each panel factorization is computed as a reduction operation where
at each node a QR factorization is performed.

@ The reduction tree is chosen depending on the underlying
architecture.

e For a binary tree log,(Pr) steps are used.
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Introduction

e Update the submatrix using the tree in logx(Pr) steps
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Figure: The update of the trailing submatrix is triggered by the reduction tree
used during panel factorization
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Introduction

CALUJ[Grigori, Demmel, Xiang '08]

The panel factorization is performed in two steps:

@ A preprocessing steps aims at identifying at low communication cost good
pivot rows

@ The pivot rows are permuted in the first positions of the panel and LU
without pivoting of the panel is performed
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Multithreaded CALU and CAQR
Multithreaded CALU

Multithreaded CALU

@ The matrix is partitioned in blocks of size Tr x b
@ The computation of each block is associated with a task
@ The task dependency graph is scheduled using a dynamic scheduler
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Figure: Matrix 4 x 4 blocks and T, = 2 and Corresponding task dependency
graph
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Multithreaded CALU and CAQR
Multithreaded CALU

Multithreaded CALU

Panel factorization is performed in two steps: find good pivots at low

communication cost, permute them and compute LU factorization of the panel
without pivoting.
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The panel factorization stays on the critical path but it'is done more efficiently
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Multithreaded CALU and CAQR
Multithreaded CALU

Multithreaded CALU (Execution)

Figure: Example of execution of CALU for a 10° x 1000 tall skinny matrix,
using b =100 and T, = 1, on 8-core

Figure: Example of execution of CALU for a 10° x 1000 tall skinny matrix,
using b =100 and T, = 8, on 8-core
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Experimental section

Environments

@ Tests performed on: two-socket, quad-core machine based on Intel
Xeon EMT64 processor running on Linux and on a four-socket,
quad-core machine based on AMD Opteron processor

e Comparison with MKL-10.0.4.23 and PLASMA 2.0 (with default
parameters)

e b= MIN(n,100) has been chosen as block size
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Experimental section

Performance of CALU

Performance of CALU, MKL_dgetrf, PLASMA _dgetrf on 8 cores

Tall Skinny Matrix, CALU, m=10"
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Figure: m=10° and varying n from 10 to 1000. 13/23



Experimental section

Performance of CAQR

Performance of CAQR, MKL_dgeqrf, PLASMA _dgeqrf on 8 cores

Tall Skinny Matrix, CAQR, m=10°
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Figure: m=10° and varying n from 10 to 1000. 1423



Experimental section

Profiling: CALU with dynamic scheduling

| AT Ay
WA YV VWV

pissnac] M M A NV T .
‘l.‘.f".” I YTV i
) | | IR} +
- Wil f B i H |-

Figure: L2,L3 Cache misses on Bluewaters Power 7. CALU with dynamic
scheduling. m=n=5000, b=150, P =4 x 2

Table: Average

L2 total cache misses | 25M
L3 total cache misses | 15M
Fetch task time 0.47%
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Current work

CALU with dynamic scheduling with data locality

@ Good mapping of task to processors using dynamic scheduler to
improve data locality.

@ Schedule a task using a queue of threads associated to recent
operation on the corresponding bloc to reuse data.

@ Minimize the number of transferts from slow to fast memory.
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Current work

CALU with dynamic scheduling and strict data locality

@ No workstealing
o Bad load balancing
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Figure: L2,L3 Cache misses on Bluewaters Power 7. CALU with dynamic
scheduling and strict data locality . m=n=5000, b=150, P =4 x 2

Table: Average

L2 total cache misses | 12.5M
L3 total cache misses | 3.5M
Fetch task time 2.27%
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Current work

CALU with dynamic scheduling, locality and workstealing

o Workstealing
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Figure: L2,L3 Cache misses on Bluewaters Power 7. CALU with dynamic
scheduling, data locality and workstealing . m=n=5000, b=150, P = 4 x 2

Table: Average

L2 total cache misses | 20M
L3 total cache misses | 12.5M
Fetch task time 1.58%
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Current work

First results on Intel X86_64, 16 cores (using mkl blas)

Table: CALU performance, M=N=5000, b=100, values:Gflops/s

Gflops/s
dgetrf 46.45
CALU (no pivoting, diagonal block as pivot) | 66,08
CALU (dynamic scheduling) 59,96
CALU (dynamic + Locality) 60,51
CALU (panel perform by dgetrf) 54,19
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Current work

First results on Bluewaters P7, (using essl)

Table: CALU performance, M=N=5000, b=100, values:Gflops/s

2x4 4x4 4x8
CALU (no pivoting, diagonal block as pivot) | 147,97 | 255,10 | 248,68
CALU (dynamic scheduling) 134,17 | 206,60 | 177,62
CALU (dynamic 4 Locality) 132,32 | 206,33 | 177,72
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Conclusion

Conclusion

@ Multithreaded CALU and CAQR lead to important improvements for
tall and skinny matrices with respect to the corresponding routines
in MKL and PLASMA.

@ Improving data locality in CALU and CAQR is a trade-off between
dequeue time and cache misses.
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Conclusion

Prospects

@ Improve the performance of the trailing matrix update by increasing
the block size to optimize BLAS3 operations.

e Combining static/dynamic scheduling

o Overlap the panel factorization with dynamic small task
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Figure: CAQR prediction
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Conclusion

Thank you

Thank you
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