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Introduction

Architectural trends show an increasing communication cost
compared to the time it takes to perform arithmetic operations

Motivated the design of communication avoiding algorithms that
minimize communication

First results are CAQR [Demmel, Grigori, Hoemmen, Langou ’08]
and CALU [Grigori, Demmel, Xiang ’08], implemented for distributed
memory.

Multithreaded CALU and CAQR lead to important improvements for
tall and skinny matrices but no significant improvements obtained so
far for square matrices.

Our goal is to evaluate and improve performance of our
multithreaded algorithms on petascale machines.
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LU factorization with partial pivoting

Factorization on Pr by Pc grid of processors as implemented in SCALAPACK:
For ib = 1 to n-1 step b
A(ib) = A(ib:n, ib:n)

1 Compute panel factorization (pdgetf2) O(nlog2Pr )

- find pivot in each column, swap rows

2 Apply all row permutations (pdlaswp)
O(n/b(log2Pc + log2Pr ))

- broadcast pivot information along the rows
- swap rows at left and right

3 Compute block row of U (pdtrsm) O(n/blog2Pc )

- broadcast right diagonal block of L of current panel

4 Update trailing matrix (pdgemm) O(n/b(log2Pc + log2Pr ))

- broadcast right block column of L
- broadcast down block row of U

Pivoting requires communication among processors on distributed memory and
synchronisation between threads on multicores.

4 / 23



Introduction
Multithreaded CALU and CAQR

Experimental section
Current work

Conclusion

CAQR
CALU

CALU and CAQR approach

Communication avoiding algorithms [Demmel, Grigori, Hoemmen,
Langou, Xiang ’08] approach:

Decrease communication required for pivoting and overcome the
latency bottleneck of classic algorithms by

performing the factorization of a block column (a tall and skinny
matrix) as a reduction operation

and doing some redundant computations

They are communication optimal in terms of both latency and
bandwidth

They lead to important speedups on distributed memory computers
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CAQR

Each panel factorization is computed as a reduction operation where
at each node a QR factorization is performed.
The reduction tree is chosen depending on the underlying
architecture.
For a binary tree log2(Pr) steps are used.

Figure: Parallel TSQR
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Update the submatrix using the tree in log2(Pr) steps

Figure: The update of the trailing submatrix is triggered by the reduction tree
used during panel factorization
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CALU[Grigori, Demmel, Xiang ’08]

The panel factorization is performed in two steps:

A preprocessing steps aims at identifying at low communication cost good
pivot rows

The pivot rows are permuted in the first positions of the panel and LU
without pivoting of the panel is performed

Figure: Stable parallel panel factorization

The update of the trailing matrix is performed as in GEPP

8 / 23



Introduction
Multithreaded CALU and CAQR

Experimental section
Current work

Conclusion

Multithreaded CALU

Multithreaded CALU

The matrix is partitioned in blocks of size Tr x b
The computation of each block is associated with a task
The task dependency graph is scheduled using a dynamic scheduler

Figure: Matrix 4 × 4 blocks and Tr = 2 and Corresponding task dependency
graph
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Multithreaded CALU

Panel factorization is performed in two steps: find good pivots at low
communication cost, permute them and compute LU factorization of the panel
without pivoting.

The panel factorization stays on the critical path but it is done more efficiently
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Multithreaded CALU (Execution)

Figure: Example of execution of CALU for a 105 × 1000 tall skinny matrix,
using b = 100 and Tr = 1, on 8-core

Figure: Example of execution of CALU for a 105 × 1000 tall skinny matrix,
using b = 100 and Tr = 8, on 8-core
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Environments

Tests performed on: two-socket, quad-core machine based on Intel
Xeon EMT64 processor running on Linux and on a four-socket,
quad-core machine based on AMD Opteron processor

Comparison with MKL-10.0.4.23 and PLASMA 2.0 (with default
parameters)

b = MIN(n, 100) has been chosen as block size
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Performance of CALU

Performance of CALU, MKL dgetrf, PLASMA dgetrf on 8 cores
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Figure: m=105 and varying n from 10 to 1000. 13 / 23
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Performance of CAQR

Performance of CAQR, MKL dgeqrf, PLASMA dgeqrf on 8 cores
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Profiling: CALU with dynamic scheduling

Figure: L2,L3 Cache misses on Bluewaters Power 7. CALU with dynamic
scheduling. m=n=5000, b=150, P = 4 × 2

Table: Average

L2 total cache misses 25M
L3 total cache misses 15M
Fetch task time 0.47%
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CALU with dynamic scheduling with data locality

Good mapping of task to processors using dynamic scheduler to
improve data locality.

Schedule a task using a queue of threads associated to recent
operation on the corresponding bloc to reuse data.

Minimize the number of transferts from slow to fast memory.
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CALU with dynamic scheduling and strict data locality

No workstealing
Bad load balancing

Figure: L2,L3 Cache misses on Bluewaters Power 7. CALU with dynamic
scheduling and strict data locality . m=n=5000, b=150, P = 4 × 2

Table: Average

L2 total cache misses 12.5M
L3 total cache misses 3.5M
Fetch task time 2.27%
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CALU with dynamic scheduling, locality and workstealing

Workstealing

Figure: L2,L3 Cache misses on Bluewaters Power 7. CALU with dynamic
scheduling, data locality and workstealing . m=n=5000, b=150, P = 4 × 2

Table: Average

L2 total cache misses 20M
L3 total cache misses 12.5M
Fetch task time 1.58%

18 / 23



Introduction
Multithreaded CALU and CAQR

Experimental section
Current work

Conclusion

First results on Intel X86 64, 16 cores (using mkl blas)

Table: CALU performance, M=N=5000, b=100, values:Gflops/s

Gflops/s
dgetrf 46.45
CALU (no pivoting, diagonal block as pivot) 66,08
CALU (dynamic scheduling) 59,96
CALU (dynamic + Locality) 60,51
CALU (panel perform by dgetrf) 54,19
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First results on Bluewaters P7, (using essl)

Table: CALU performance, M=N=5000, b=100, values:Gflops/s

2x4 4x4 4x8
CALU (no pivoting, diagonal block as pivot) 147,97 255,10 248,68
CALU (dynamic scheduling) 134,17 206,60 177,62
CALU (dynamic + Locality) 132,32 206,33 177,72
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Conclusion

Multithreaded CALU and CAQR lead to important improvements for
tall and skinny matrices with respect to the corresponding routines
in MKL and PLASMA.

Improving data locality in CALU and CAQR is a trade-off between
dequeue time and cache misses.
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Prospects

Improve the performance of the trailing matrix update by increasing
the block size to optimize BLAS3 operations.

Combining static/dynamic scheduling

Overlap the panel factorization with dynamic small task

Figure: CAQR prediction
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Thank you

Thank you
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