
NAMD at Extreme Scale

Presented by: Eric Bohm
Team: Eric Bohm, Chao Mei, Osman Sarood,

David Kunzman, Yanhua, Sun, Jim Phillips, John
Stone, LV Kale

Overview

  NAMD description
  Power7 Tuning
  Support for Large Molecular Systems
  Petascale Tuning
  Torrent Network optimizations
  Exascale Feasibility
  Summary/Future work

NAMD Serving NIH Users and Goals
Practical Supercomputing for Biomedical Research

  40,000 users can’t all be computer experts.
-  18% are NIH-funded; many in other countries.
-  10,000 have downloaded more than one version.
-  1700 citations of NAMD reference papers.

  One program for all platforms.
-  Desktops and laptops – setup and testing
-  Linux clusters – affordable local workhorses
-  Supercomputers – free allocations on TeraGrid
-  Blue Waters – sustained petaflop/s performance
-  GPUs - next-generation supercomputing

  User knowledge is preserved.
-  No change in input or output files.
-  Run any simulation on any number of cores.

  Available free of charge to all.

Phillips et al., J. Comp. Chem. 26:1781-1802, 2005.

NSF/NCSA Blue Waters Project

 Sustained Petaflops system funded by
NSF to be ready in 2011.

-  System expected to exceed 300,000
processor cores.

 NSF Acceptance test: 100 million atom
Bar Domain simulation using NAMD.

 NAMD PRAC The Computational
Microscope

-  Systems from 10 to 100 million
atoms

 A recently submitted PRAC from an
independent group wishes to use
NAMD

-  1 Billion atoms!

Hybrid of spatial and force decomposition:

• Spatial decomposition of atoms into cubes
(called patches)
• For every pair of interacting patches, create one
object for calculating electrostatic interactions

• Recent: Blue Matter, Desmond, etc. use
this idea in some form

NAMD Parallelization
 Molecular Dynamics simulation

of biological systems
 Uses the Charm++ idea:

-  Decompose the computation into
a large number of objects

-  Have an Intelligent Run-time
system (of Charm++) assign
objects to processors for
dynamic load balancing

BW Challenges and Opportunities

  Support systems >= 100 Million atoms
  Performance requirements for 100 Million atom
  Scale to over 300,000 cores
  Power 7 Hardware

- PPC architecture
- Wide node at least 32 cores with 128 HT threads

  BlueWaters Torrent interconnect
  Doing research under NDA

NAMD on BW

  Leverage Software Stack (XL, etc)
  Use SMT=4 effectively
  Use Power7 effectively

- Shared memory topology
- Prefetch (dcbt)
- Loop unrolling
- SIMD VSX

  Use Torrent effectively
- LAPI now, soon PAMI

Petascale Scalability Concerns
  Centralized load balancer - solved
  IO

- Unscalable file formats - solved
-  input read at startup - solved
- Sequential output – solved

 Performance tuning ongoing

  Fine grain overhead – in progress
  Non-bonded multicasts – being studied
  Particle Mesh Ewald

- Largest grid target <= 1024
- Communication overhead primary issue
- Considering Multilevel Summation alternative

NAMD and SMT=4

  P7 hardware threads are prioritized
- 0,1 highest
- 2,3 lowest

  Charm runtime measure processor
performance
- Load balancer operates accordingly

  NAMD on SMT=4 35% faster than SMT=1
- No new code required!

  At the limit it requires 4x more decomposition

NAMD on Power7 HV 32 AIX

Performance on P7

  Full node scaling to
32 cores 128 threads
- Not on MR system
- BlueDrop memory

bandwidth inadequate
- Good scaling on NDA

hardware
 Cannot report those

numbers here

SMT=4 helps
Need latency tolerance
One thread works while

others blocked on
load/store

Finer decomposition
More synchronization
More overhead

SIMD -> VSX

  VSX adds double
precision support to
VMX

  SSE2 already in use
in 2 NAMD functions

  Simple MD-SIMD test
model performed well.

NSF benchmark
requires double
precision, reducing
SIMD benefits
1-2k LOC to refactor

Implementing platform
independent short
vector SIMD kernel

Support for Large Molecular
Systems

  New Compressed PSF file format
- Supports >100 million atoms
- Supports parallel startup
- Support MEM_OPT molecule representation

  MEM_OPT molecule format reduces data
replication through atom signatures

  Parallelize reading of input at startup
- Cannot support legacy PDB format
- Use binary coordinates format

  Changes in VMD courtesy John Stone

Parallel Startup

Parallel Output

  Coordinate and velocity restart files
  Coordinate and velocity trajectory files
  Memory footprint from sequential output

impossible for large systems
  Total data not immense, but is proportional to

number of atoms

Only	
 One	
 Writes	
 at	
 a	
 Time	

Click to edit Master text styles
Second level

  Third level
  Fourth level

  Fifth level

1. Overlapped	
 with	
 computa4on	

2. Crossed	
 mul4ple	
 4mesteps	

3. S4ll	
 too	
 long	
 Λ	

Output ongoing work

  Time to explore multiple output files
- Lazily concatenate
- Or post process
- Or leave separate when tool chain catches up

  Parallel file systems can usually these well as
long as number of files is less than number of
cores at the limit
- Requires some sweet spot discovery for number of

writers and files

Hierarchical Load Balancing

Hierarchical LB decision time

Fine grain overhead

  End user targets are all fixed size problems
  Strong scaling performance dominates

- Maximize number of nanoseconds/day of simulation
  Non-bonded cutoff distance determines patch

size
- Patch can be subdivided along x, y, z dimensions

 2 away X, 2-away XY, 2 away XYZ
-  Theoretically K-away...
-  3 away or even 5 away may provide better initial balance of work
-  Currently researching adaptive decomposition

Fine-grain overhead reduction
  Distant computes have little or no interaction

- Long diagonal opposites of 2-awayXYZ mostly
outside of cutoff

  Optimizations
- Don't migrate tiny computes
- Sort pairlists to truncate computation
-  Increase margin and do not create redundant

compute objects
  Slight (<5%) reduction in step time
  Avoid carrying redundant data in pairlists

- 10% sequential performance improvement on power
7

•  N-body solver with better parallel scalability than PME (no 3D FFTs required)
•  Supports periodic and non-periodic boundary conditions
•  Algorithmic complexity is linear in the number of atoms
•  Approach can be applied to other types of potentials
 (e.g. 1/r6 dispersion potential)
•  Already implemented in NAMD-Lite
•  Will be implemented in NAMD

Multilevel Summation Method

grid
levels

atom
level

grid-grid
interactions
(3D convolution)

atom-grid
interactions

Localized communication
at each grid level

Overall communication
pattern is many-to-one
(reduction of gridded charge)
followed by one-to-many
(broadcast of gridded potential)
vs.
the two stages of
many-to-many communication
required for PME 3D FFTs

Interpolate “smoothings” of the 1/r electrostatic potential from multiple grid levels

PAMI optimizations

  Parallel Active Message Interface
  PAMI is currently NDA

- Open Source by the time BG/Q is accepted
  Active messages express Charm++ event

driven paradigm well
- Cautiously optimistic about PAMI performance

  Asynchronous Collectives
- Express communication directly in PAMI primitives

 More efficient and scalable than building on PtP

Exascale Computation Model

  N = Amount of computation
  Pc = number of processor cores
  n= floating point operations
  tc= time for computing a flop
  1/η= efficiency factor

Tcomp =1/η× f (N, Pc) × n × tc

Exascale Communication Model

  l= number of links traversed
  Bw = Bandwidth
  ts = time for message handling sender+

receiver
  th = time spent at each link (switch/router/etc)
  tw = per word time (inverse of bandwidth)
  M = size of message in bytes

Exascale Feasibility

  Hypothetical exascale machine: 2^30 1 GHz
cores, 10flops per cycle, 1000 cores per node

  Time per iteration
- T = 1/η * flops * tc + M * (ts + b * tw)

  Target: flop/s > 1 Exaflop/s
-  flops/T > 10^18

  Assume 100 atoms/core
- 107 billion atom system

Exascale MD Weak Scaling

Exascale MD Strong Scaling

Future work

  Improve granularity
  Leverage native communication API

- PAMI not ready yet
  Particle Mesh Ewald improve/replace

- Currently constructing analytical model to predict
performance

  Parallel I/O optimization
  Exascale feasibility model improvements

