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Overview 

  NAMD description 
  Power7 Tuning 
  Support for Large Molecular Systems 
  Petascale Tuning 
  Torrent Network optimizations 
  Exascale Feasibility 
  Summary/Future work 



NAMD Serving NIH Users and Goals 
Practical Supercomputing for Biomedical Research 

  40,000 users can’t all be computer experts. 
-  18% are NIH-funded; many in other countries. 
-  10,000 have downloaded more than one version. 
-  1700 citations of NAMD reference papers. 

  One program for all platforms. 
-  Desktops and laptops – setup and testing 
-  Linux clusters – affordable local workhorses 
-  Supercomputers – free allocations on TeraGrid 
-  Blue Waters – sustained petaflop/s performance 
-  GPUs - next-generation supercomputing 

  User knowledge is preserved. 
-  No change in input or output files. 
-  Run any simulation on any number of cores. 

  Available free of charge to all. 

Phillips et al., J. Comp. Chem. 26:1781-1802, 2005. 



NSF/NCSA Blue Waters Project 

 Sustained Petaflops system funded by 
NSF to be ready in 2011. 

-  System expected to exceed 300,000 
processor cores. 

 NSF Acceptance test: 100 million atom 
Bar Domain simulation using NAMD. 

 NAMD PRAC The Computational 
Microscope 

-  Systems from 10 to 100 million 
atoms 

 A recently submitted PRAC from an 
independent group wishes to use 
NAMD 

-  1 Billion atoms! 



Hybrid of spatial and force decomposition: 

• Spatial decomposition of atoms into cubes 
(called patches) 
• For every pair of interacting patches, create one 
object for calculating electrostatic interactions 

• Recent: Blue Matter, Desmond, etc. use 
this idea in some form 

NAMD Parallelization 
 Molecular Dynamics simulation 

of biological systems 
 Uses the Charm++ idea: 

-  Decompose the computation into 
a large number of objects 

-  Have an Intelligent Run-time 
system (of Charm++) assign 
objects to processors for 
dynamic load balancing 



BW Challenges and Opportunities 

  Support systems >= 100 Million atoms 
  Performance requirements for 100 Million atom  
  Scale to over 300,000 cores 
  Power 7 Hardware 

- PPC architecture 
- Wide node at least 32 cores with 128 HT threads 

  BlueWaters Torrent interconnect  
  Doing research under NDA 



NAMD on BW 

  Leverage Software Stack (XL, etc) 
  Use SMT=4 effectively 
  Use Power7 effectively 

- Shared memory topology 
- Prefetch (dcbt) 
- Loop unrolling 
- SIMD VSX 

  Use Torrent effectively 
- LAPI now, soon PAMI 



Petascale Scalability Concerns 
  Centralized load balancer - solved 
  IO 

- Unscalable file formats - solved 
-  input read at startup - solved 
- Sequential output – solved 

 Performance tuning ongoing 

  Fine grain overhead – in progress 
  Non-bonded multicasts – being studied 
  Particle Mesh Ewald 

- Largest grid target <= 1024 
- Communication overhead primary issue 
- Considering Multilevel Summation alternative 



NAMD and SMT=4 

  P7 hardware threads are prioritized 
- 0,1 highest 
- 2,3 lowest 

  Charm runtime measure processor 
performance 
- Load balancer operates accordingly 

  NAMD on SMT=4 35% faster than SMT=1 
- No new code required! 

  At the limit it requires 4x more decomposition 



NAMD on Power7 HV 32 AIX 



Performance on P7 

  Full node scaling to 
32 cores 128 threads 
- Not on MR system 
- BlueDrop memory 

bandwidth inadequate 
- Good scaling on NDA 

hardware 
 Cannot report those 

numbers here 

SMT=4 helps 
Need latency tolerance 
One thread works while 

others blocked on 
load/store 

Finer decomposition 
More synchronization 
More overhead 



SIMD -> VSX 

  VSX adds double 
precision support to 
VMX 

  SSE2 already in use 
in 2 NAMD functions 

  Simple MD-SIMD test 
model performed well. 

NSF benchmark 
requires double 
precision, reducing 
SIMD benefits 
1-2k LOC to refactor 

Implementing platform 
independent short 
vector SIMD kernel 



Support for Large Molecular 
Systems 

  New Compressed PSF file format 
- Supports >100 million atoms 
- Supports parallel startup 
- Support MEM_OPT molecule representation 

  MEM_OPT molecule format reduces data 
replication through atom signatures 

  Parallelize reading of input at startup 
- Cannot support legacy PDB format 
- Use binary coordinates format 

  Changes in VMD courtesy John Stone 



Parallel Startup 



Parallel Output 

  Coordinate and velocity restart files 
  Coordinate and velocity trajectory files 
  Memory footprint from sequential output 

impossible for large systems 
  Total data not immense,  but is proportional to 

number of atoms  
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Output ongoing work 

  Time to explore multiple output files 
- Lazily concatenate 
- Or post process 
- Or leave separate when tool chain catches up 

  Parallel file systems can usually these well as 
long as number of files is less than number of 
cores at the limit 
- Requires some sweet spot discovery for number of 

writers and files 



Hierarchical Load Balancing 



Hierarchical LB decision time 



Fine grain overhead 

  End user targets are all fixed size problems 
  Strong scaling performance dominates 

- Maximize number of nanoseconds/day of simulation 
  Non-bonded cutoff distance determines patch 

size 
- Patch can be subdivided along x, y, z dimensions 

 2 away X, 2-away XY, 2 away XYZ 
-  Theoretically K-away... 
-  3 away or even 5 away may provide better initial balance of work 
-  Currently researching adaptive decomposition 



Fine-grain overhead reduction 
  Distant computes have little or no interaction 

- Long diagonal opposites of 2-awayXYZ mostly 
outside of cutoff 

  Optimizations 
- Don't migrate tiny computes 
- Sort pairlists to truncate computation 
-  Increase margin and do not create redundant 

compute objects 
  Slight (<5%) reduction in step time 
  Avoid carrying redundant data in pairlists 

- 10% sequential performance improvement on power 
7 



•  N-body solver with better parallel scalability than PME (no 3D FFTs required) 
•  Supports periodic and non-periodic boundary conditions 
•  Algorithmic complexity is linear in the number of atoms 
•  Approach can be applied to other types of potentials 
   (e.g. 1/r6 dispersion potential) 
•  Already implemented in NAMD-Lite 
•  Will be implemented in NAMD 

Multilevel Summation Method 

grid 
levels 

atom 
level 

grid-grid 
interactions 
(3D convolution) 

atom-grid 
interactions 

Localized communication 
at each grid level 

Overall communication 
pattern is many-to-one 
(reduction of gridded charge) 
followed by one-to-many 
(broadcast of gridded potential) 
vs. 
the two stages of 
many-to-many communication 
required for PME 3D FFTs 

Interpolate “smoothings” of the 1/r electrostatic potential from multiple grid levels 



PAMI optimizations 

  Parallel Active Message Interface 
  PAMI is currently NDA 

- Open Source by the time BG/Q is accepted 
  Active messages express Charm++ event 

driven paradigm well 
- Cautiously optimistic about PAMI performance 

  Asynchronous Collectives 
- Express communication directly in PAMI primitives 

 More efficient and scalable than building on PtP 



Exascale Computation Model 

  N = Amount of computation 
  Pc = number of processor cores 
  n= floating point operations 
  tc= time for computing a flop 
  1/η= efficiency factor 

Tcomp =1/η× f (N, Pc ) × n × tc 



Exascale Communication Model 

  l= number of links traversed 
  Bw = Bandwidth 
  ts = time for message handling sender+ 

receiver 
  th = time spent at each link (switch/router/etc) 
  tw = per word time (inverse of bandwidth) 
  M = size of message in bytes 



Exascale Feasibility 

  Hypothetical exascale machine: 2^30 1 GHz 
cores, 10flops per cycle, 1000 cores per node 

  Time per iteration 
- T = 1/η * flops * tc + M * (ts + b * tw) 

  Target: flop/s > 1 Exaflop/s 
-  flops/T > 10^18 

  Assume 100 atoms/core 
- 107 billion atom system 



Exascale MD Weak Scaling 



Exascale MD Strong Scaling 



Future work 

  Improve granularity 
  Leverage native communication API 

- PAMI not ready yet 
  Particle Mesh Ewald improve/replace 

- Currently constructing analytical model to predict 
performance 

  Parallel I/O optimization 
  Exascale feasibility model improvements 


