Ed Karrels

NCSA student employee / research assistant Advisor: William Gropp NCSA manager: Daniel Katz Area of research: parallel I/O

Parallel I/O

- Improving MPI-IO collective routines
 - MPI_File_{read,write}_all
 - Useful with multidimensional arrays
 - Coalesce small reads/writes
 - Parallelize I/O (on parallel file system)

Lustre

- Common HPC parallel file system
- Familiar POSIX API
- Use "striping" to parallelize data accesses
 - Many small files
 - One large file, blocks distributed round-robin

lfs setstripe --stripe-size 1M --stripe-count 4 ~/scratch/mydata

Lustre Throughput on Blue Waters

- One node: 520 MiB/sec
 - Access size >= 256 KiB
- 8k nodes: 1150 GiB/sec
 - 2200x speedup
- No parallelism with single node; need multiple nodes
- Simple solution: one file per process
 - Many files, unwieldy
- Harder: many stripes in one file
 - Difficult to coordinate, different node writes each block
- How about both?

More stripes, fewer files

• N files, each with M stripes = (N*M)-way parallelism

Network congestion with higher node count

---- Minimum ---- Average ---- Maximum

Machine learning – shuffled input data

- Many small data in one large file
 - Data file + (offset, length) index
- Train on random permutation of data
- Many seeks \rightarrow very slow
- Solution: out-of-core shuffle

Out-of-core shuffle

- Similar to "sort" command (or "shuf")
 - 1. Read large blocks into memory
 - 2. Shuffle in-memory
 - 3. Write to temp files
 - 4. Randomly merge temp files
- Overall IO time: 4 * data size
 - No seeks, all streaming

Throughput on HAL

- NFS: poor and counterintuitive performance
 - Write throughput improved with frequent flushes (each 1MB of data)
 - 40 MiB/s \rightarrow 200 MiB/s
 - Read throughput improved with multiple threads reading at random offsets

# of threads	Access pattern	
	Sequential	Random
1	40.3	111
4	34.9	242

Throughput in MiB/sec

• New SSD-based storage, shuffle still useful?