
Ed Karrels
NCSA student employee / research assistant

Advisor: William Gropp
NCSA manager: Daniel Katz

Area of research: parallel I/O

Parallel I/O

• Improving MPI-IO collective routines
• MPI_File_{read,write}_all
• Useful with multidimensional arrays
• Coalesce small reads/writes
• Parallelize I/O (on parallel file system)

Lustre

• Common HPC parallel file system
• Familiar POSIX API
• Use “striping” to parallelize data accesses

• Many small files
• One large file, blocks distributed round-robin

OST 0 OST 1 OST 2 OST 3 OST 0 OST 1 OST 2 OST 3

lfs setstripe --stripe-size 1M --stripe-count 4 ~/scratch/mydata

Lustre Throughput on Blue Waters

• One node: 520 MiB/sec
• Access size >= 256 KiB

• 8k nodes: 1150 GiB/sec
• 2200x speedup

• No parallelism with single node; need multiple nodes
• Simple solution: one file per process

• Many files, unwieldy
• Harder: many stripes in one file

• Difficult to coordinate, different node writes each block
• How about both?

More stripes, fewer files

0

50

100

150

200

16 64 256 1024 4096

Th
ro

ug
hp

ut
 G

iB
/s

ec

File count

Write throughput
128 nodes, 4096 processes

File count * stripe count = 4096

Minimum Average Maximum

• N files, each with M stripes = (N*M)-way parallelism

Network congestion with higher node count

0

200

400

600

800

1000

1200

1400

1600

1800

1024 4096 16384 65536 262144

Th
ro

ug
hp

ut
 G

iB
/s

ec

File count

Write throughput
8192 nodes, 262144 processes

File count * stripe count = 262,144

Minimum Average Maximum

Machine learning – shuffled input data

• Many small data in one large file
• Data file + (offset,length) index

• Train on random permutation of data
• Many seeks → very slow
• Solution: out-of-core shuffle

Out-of-core shuffle

• Similar to “sort” command (or “shuf”)
1. Read large blocks into memory
2. Shuffle in-memory
3. Write to temp files
4. Randomly merge temp files

• Overall IO time: 4 * data size
• No seeks, all streaming

Throughput on HAL

• NFS: poor and counterintuitive performance
• Write throughput improved with frequent flushes (each 1MB of data)

• 40 MiB/s → 200 MiB/s
• Read throughput improved with multiple threads reading at random offsets

of threads
Access pattern

Sequential Random

1 40.3 111

4 34.9 242

• New SSD-based storage, shuffle still useful?

Throughput in MiB/sec

	Ed Karrels
	Parallel I/O
	Lustre
	Lustre Throughput on Blue Waters
	More stripes, fewer files
	Network congestion	with higher node count
	Machine learning – shuffled input data
	Out-of-core shuffle
	Throughput on HAL

