Ed Karrels

NCSA student employee / research assistant
Advisor: William Gropp
NCSA manager: Daniel Katz
Area of research: parallel I/0

Parallel I/0O

* Improving MPI-10 collective routines
* MPI_File {read,write} all
e Useful with multidimensional arrays
e Coalesce small reads/writes
* Parallelize I/O (on parallel file system)

Lustre

* Common HPC parallel file system
* Familiar POSIX API

* Use “striping” to parallelize data accesses
* Many small files
* One large file, blocks distributed round-robin

1fs setstripe --stripe-size 1M --stripe-count 4 ~/scratch/mydata

OSTO OST1 OST2 OST 3 OSTO OST1 OST 2 OST 3

Lustre Throughput on Blue Waters

* One node: 520 MiB/sec
* Access size >= 256 KiB

e 8k nodes: 1150 GiB/sec
e 2200x speedup

* No parallelism with single node; need multiple nodes

e Simple solution: one file per process
* Many files, unwieldy

* Harder: many stripes in one file
 Difficult to coordinate, different node writes each block

e How about both?

More stripes, fewer files

* N files, each with M stripes = (N*M)-way parallelism

Write throughput
128 nodes, 4096 processes

File count * stripe count = 4096

200
) ° ® ° ° o ® °
% 150 §77m=-- *oeee e i b S— *=m-" #-—-==oos S o
z
5 100
<
[o10]
3
= 50
|_
0
16 64 256 1024 4096
File count

Minimum --e--Average e--Maximum

Network congestion with higher node count

Write throughput
8192 nodes, 262144 processes
File count * stripe count = 262,144
1800

1600

1400 °

=
N
o
o
’f
~
~\
/
!
4
/

1000 \ / N ;

0
o
o
’/
~
-,
’
S
N

600 \ ! \ y)

Throughput GiB/sec

400 X 2 ‘e g

200

1024 4096 16384 65536 262144
File count

Minimum --e--Average ®--Maximum

Machine learning — shuffled input data

* Many small data in one large file
e Data file + (offset,length) index

* Train on random permutation of data
* Many seeks = very slow
 Solution: out-of-core shuffle

Out-of-core shuffle

e Similar to “sort” command (or “shuf”)

w N

4.

Read large blocks into memory
Shuffle in-memory

Write to temp files

Randomly merge temp files

e Overall 10 time: 4 * data size
* No seeks, all streaming

Throughput on HAL

* NFS: poor and counterintuitive performance

e Write throughput improved with frequent flushes (each 1MB of data)
e 40 MiB/s - 200 MiB/s
e Read throughput improved with multiple threads reading at random offsets

Throughput in MiB/sec

Access pattern

of threads Sequential | Random
40.3 111
4 34.9 242

 New SSD-based storage, shuffle still useful?

	Ed Karrels
	Parallel I/O
	Lustre
	Lustre Throughput on Blue Waters
	More stripes, fewer files
	Network congestion	with higher node count
	Machine learning – shuffled input data
	Out-of-core shuffle
	Throughput on HAL

