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Parallel I/O

• Improving MPI-IO collective routines
• MPI_File_{read,write}_all
• Useful with multidimensional arrays
• Coalesce small reads/writes
• Parallelize I/O (on parallel file system)



Lustre

• Common HPC parallel file system
• Familiar POSIX API
• Use “striping” to parallelize data accesses

• Many small files
• One large file, blocks distributed round-robin

OST 0 OST 1 OST 2 OST 3 OST 0 OST 1 OST 2 OST 3

lfs setstripe --stripe-size 1M --stripe-count 4 ~/scratch/mydata



Lustre Throughput on Blue Waters

• One node: 520 MiB/sec
• Access size >= 256 KiB

• 8k nodes: 1150 GiB/sec
• 2200x speedup

• No parallelism with single node; need multiple nodes
• Simple solution: one file per process

• Many files, unwieldy
• Harder: many stripes in one file

• Difficult to coordinate, different node writes each block
• How about both?



More stripes, fewer files
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• N files, each with M stripes = (N*M)-way parallelism



Network congestion with higher node count
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Machine learning – shuffled input data

• Many small data in one large file
• Data file + (offset,length) index

• Train on random permutation of data
• Many seeks → very slow
• Solution: out-of-core shuffle



Out-of-core shuffle

• Similar to “sort” command (or “shuf”)
1. Read large blocks into memory
2. Shuffle in-memory
3. Write to temp files
4. Randomly merge temp files

• Overall IO time: 4 * data size
• No seeks, all streaming



Throughput on HAL

• NFS: poor and counterintuitive performance
• Write throughput improved with frequent flushes (each 1MB of data)

• 40 MiB/s → 200 MiB/s
• Read throughput improved with multiple threads reading at random offsets

# of threads
Access pattern

Sequential Random

1 40.3 111

4 34.9 242

• New SSD-based storage, shuffle still useful?

Throughput in MiB/sec
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