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Introduction

• In 2017, NCSA was funded by the NSF’s 
Major Research Instrumentation program.

• The goal is to develop and deploy a 
computational "instrument" for supporting 
deep learning applications at scale.

• The machine was named as Hardware 
Accelerated Learning (HAL) cluster.

• It became operational in March 2019.



System Requirements

• Performance Requirements
• Many modern DL frameworks have been optimized for NVIDIA GPUs
• Fast cross-GPUs bandwidth delivered by NVLink 2.0 interconnection
• Storage and node interconnects support simultaneous data processing

• Usability Requirements
• Traditional HPC job submission and resource scheduling which access 

the system via ssh through the command line interface
• Interactive apps like Jupyter Notebook through web-based interface.
• Customizable environments via modules, containers, and isolation of 

Python environments within the user space.



HAL System Design

• Hardware Selection
• Login Node

• IBM LC921 server
• Storage Node 

• IBM LC922 server (initial)
• DDN GS400NVE flash arrays server (final)

• Compute Node
• IBM POWER9 AC922 server with NVLink 2.0 

interconnected V100 GPUs (compute node)
• Network

• Mellanox EDR InfiniBand
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IBM Power9 AC922

• 16 IBM AC922 nodes
• IBM 8335-GTH AC922 server

• 2x 20-core POWER9 CPU @ 2.4GHz
• 256 GB DDR4
• 4x NVIDIA V100 GPUs

• 5120 cores
• 16 GB HBM 2

• 2-Port EDR 100 GB IB ConnectX-5 Adapter
• CentOS 7.7
• CUDA 10.2, cuDNN

7.6.5, NCCL 2.5.6
• IBM XLC 16.1.1, IBM 

XLFORTRAN 16.1.1
• Advance toolchain for 

Linux on Power 12.0
• IBM Watson Machine 

Learning Community 
Edition 1.7.0 
(TensorFlow, PyTorch, 
RAPIDS cuML and 
cuDF)

• SLURM & Open 
OnDemand 

HAL cluster
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DDN GS400NVE Flash Array
• 244 TB usable
• NVME SSD-

based storage
• Spectrum Scale 

File System



HAL System Design

• Storage Selection
• Multiple Vendors
• Multiple Benchmarks

• IOR
• mdtest
• DIOT

• Cost per Usable TB
• Storage Tuning

• balance between 
bandwidth and IOPs



HAL System Design
• Software Stack

• OS
• CentOS 7.7 LE ALT for POWER9

• Environment Module
• Lmod

• ML/DL Tools
• IBM Watson Machine Learning Community Edition, which includes Caffe, Tensorflow

and Pytorch. 
• Both python 2.7 and 3.6/3.7 versions of WMLCE. 

• Other Software Components 
• NVIDIA CUDA tools
• PGI compiler
• IBM Advance toolchain 
• Jupyter Notebook and Jupyter Lab
• Tensorboard
• H2O AI



HAL System Design
• Software Stack

• Slurm Wrapper Suite
• Designed to simplify the use of the Slurm resource allocation and job submission 

utility. 



HAL System Design
• Software Stack

• HAL OnDemand is based on Open OnDemand Project, which provide 
web-based access to our HPC resources



HAL System Design
• Software Stack

• Monitoring Stack
• Telegraf collects metric
• InfluxDB stores dataset
• Grafana provides visualization



HAL System Design
• Software Stack

• HAL System on Mobile Platforms



ImageNet Distributed Training Benchmark

• Implementation Details
• Scaling ResNet-50 (TensorFlow and PyTorch) trained on ImageNet 

across multiple GPUs and multiple compute nodes
• Official implementations of ResNet-50 for both frameworks
• The optimizer utilized standard momentum with 𝑚 of 0.9 and a weight 

decay 𝜆 of 0.0001
• All models were trained for 90 epochs
• Per-GPU batch size of 256 images
• NVIDIA NCCL as communication backend
• cnn_tf_v1.14_compatible branch and horovod for TensorFlow
• Automatic Mixed Precision (Amp) and Distributed Data Parallel (DDP) 

from NVIDIA Apex for mixed-precision and distributed training for 
PyTorch



ImageNet Distributed Training Benchmark
• Analysis of Results

• With 64 GPUs across 16 compute nodes, we can train ResNet-50 in 41 
mins, 43 secs with TensorFlow and 56 min, 18 sec with PyTorch, while 
maintaining comparable top-1 and top-5 accuracy

• The global throughput shows that we were able to achieve near linear 
performance scaling in both frameworks



ImageNet Distributed Training Benchmark
• Analysis of Results

• We achieve distributed training speed-up without the loss of accuracy.
• Most experiments reached a top-1 validation accuracy of 76% in the 

PyTorch benchmark.
• The Accuracy all peak at comparable accuracy near the end of training 

during the TensorFlow benchmark. 
• Average bandwidth is 3.84 GB/s and average IOPS is 42.95K.



Discussion and Lessons Learned

• Issued over 300 user accounts, supported over 70 faculty 
research groups from over 20 departments

• Over 30 publications along with 4+ Students Thesis
• Using AWS (p3.2xlarge instance) cost as a reference, HAL 

provides over $141,000.00 in value every month. 
• Provide regular training sessions for new users 
• Organize hackathons where students can work on various 

problems that require building and training DNN models.
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Thank you for your time !


